948 resultados para Low-dimensional systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface morphologies of poly(styrene-b-4vinylpyridine) (PS-b-P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (phi(PS)) in the mixture. It was found that when hPS was added into symmetric PS-b-P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With phi(PS) increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in phi(PS) is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a two-level 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low dimensional manifold learnt by Temporal Laplacian Eigenmaps. Then, an improved global pose is calculated by refining individual limb poses. The validation of our method uses a public standard dataset and demonstrates its accurate and computational efficiency. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, thermal, chemisorptive, and electronic properties of Ce on Pt{111} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2 x 10(-30) C m and similar to 1.3x10(-29) m(3), respectively. Pt-Ce intermixing commences at similar to 400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The Various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagome nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagome net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated drift-wave turbulence in the plasma edge of a small tokamak by considering solutions of the Hasegawa-Mima equation involving three interacting modes in Fourier space. The resulting low-dimensional dynamics presented periodic as well as chaotic evolution of the Fourier-mode amplitudes, and we performed the control of chaotic behaviour through the application of a fourth resonant wave of small amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically study many-body excitations in three different quasi-one-dimensional (Q1D) electron systems: (i) those formed on the surface of liquid Helium; (ii) in two coupled semiconductor quantum wires; and (iii) Q1D electrons embedded in polar semiconductor-based quantum wires. Our results show intersubband coupling between higher subbands and the two lowest subbands affecting even the lower energy intersubband plasmons on the liquid Helium surface. Concerning the second system, we show a pronounced extra peak appearing in the intersubband impurity spectral function for temperatures as high as 20 K. We finally show coupled intersubband plasmon-phonon modes surviving for temperatures up to 300 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some nonlinear differential systems in (2+1) dimensions are characterized by means of asymptotic modules involving two poles and a ring of linear differential operators with scalar coefficients.Rational and soliton-like are exhibited. If these coefficients are rational functions, the formalism leads to nonlinear evolution equations with constraints. © 1989.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.