Reduction of infinite dimensional systems to finite dimensions: Compact convergence approach


Autoria(s): Carvalho, A. N.; Cholewa, J. W.; Lozada-Cruz, G.; Primo, M. R T
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

10/07/2013

Resumo

We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.

Formato

600-638

Identificador

http://dx.doi.org/10.1137/10080734X

SIAM Journal on Mathematical Analysis, v. 45, n. 2, p. 600-638, 2013.

0036-1410

1095-7111

http://hdl.handle.net/11449/75946

10.1137/10080734X

WOS:000318405900007

2-s2.0-84879745024

Idioma(s)

eng

Relação

SIAM Journal on Mathematical Analysis

Direitos

closedAccess

Palavras-Chave #Asymptotic behavior of solutions #Attractors #Invariant manifolds #Perturbations #Spatial homogeneity #Mathematical techniques
Tipo

info:eu-repo/semantics/article