769 resultados para Learning theory
Resumo:
The last two decades has seen a proliferation in the provision of, and importance attached to, coach education in many Western countries [1]. Pivotal to many coach education programmes is the notion of apprenticeship [2,3,4]. Increasingly, mentoring is being positioned as a possible tool for enhancing coach education and consequently professional expertise [5]. However, there is a paucity of empirical data on interventions in, and evaluations of, coach education programmes. In their recent evaluation of a coach education programme Cassidy, Potrac & McKenzie [6] conclude that the situated learning literature could provide coach educators with a generative platform for the (re)examinationof apprenticeships and mentoring in a coach education context. This paper consequently discusses the merits of using situated learning theory [7] and the associated concept of Communities of Practice (CoP) [8] to stimulate discussion on developing new understandings of the practices of apprenticeship and mentoring in coach education.
Resumo:
Assessment has widely been described as being ‘at the centre of the student experience’. It would be difficult to conceive of the modern teaching university without it. Assessment is accepted as one of the most important tools that an educator can deploy to influence both what and how students learn. Evidence suggests that how students allocate time and effort to tasks and to developing an understanding of the syllabus is affected by the method of assessment utilised and the weighting it is given. This is particularly significant in law schools where law students may be more preoccupied with achieving high grades in all courses than their counterparts from other disciplines. However, well-designed assessment can be seen as more than this. It can be a vehicle for encouraging students to learn and engage more broadly than with the minimums required to complete the assessment activity. In that sense assessment need not merely ‘drive’ learning, but can instead act as a catalyst for further learning beyond what a student had anticipated. In this article we reconsider the potential roles and benefits in legal education of a form of interactive classroom learning we term assessable class participation (‘ACP’), both as part of a pedagogy grounded in assessment and learning theory, and as a platform for developing broader autonomous approaches to learning amongst students. We also consider some of the barriers students can face in ACP and the ways in which teacher approaches to ACP can positively affect the socio-emotional climates in classrooms and thus reduce those barriers. We argue that the way in which a teacher facilitates ACP is critical to the ability to develop positive emotional and learning outcomes for law students, and for teachers themselves.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.
Resumo:
The original solution to the high failure rate of software development projects was the imposition of an engineering approach to software development, with processes aimed at providing a repeatable structure to maintain a consistency in the ‘production process’. Despite these attempts at addressing the crisis in software development, others have argued that the rigid processes of an engineering approach did not provide the solution. The Agile approach to software development strives to change how software is developed. It does this primarily by relying on empowered teams of developers who are trusted to manage the necessary tasks, and who accept that change is a necessary part of a development project. The use of, and interest in, Agile methods in software development projects has expanded greatly, yet this has been predominantly practitioner driven. There is a paucity of scientific research on Agile methods and how they are adopted and managed. This study aims at addressing this paucity by examining the adoption of Agile through a theoretical lens. The lens used in this research is that of double loop learning theory. The behaviours required in an Agile team are the same behaviours required in double loop learning; therefore, a transition to double loop learning is required for a successful Agile adoption. The theory of triple loop learning highlights that power factors (or power mechanisms in this research) can inhibit the attainment of double loop learning. This study identifies the negative behaviours - potential power mechanisms - that can inhibit the double loop learning inherent in an Agile adoption, to determine how the Agile processes and behaviours can create these power mechanisms, and how these power mechanisms impact on double loop learning and the Agile adoption. This is a critical realist study, which acknowledges that the real world is a complex one, hierarchically structured into layers. An a priori framework is created to represent these layers, which are categorised as: the Agile context, the power mechanisms, and double loop learning. The aim of the framework is to explain how the Agile processes and behaviours, through the teams of developers and project managers, can ultimately impact on the double loop learning behaviours required in an Agile adoption. Four case studies provide further refinement to the framework, with changes required due to observations which were often different to what existing literature would have predicted. The study concludes by explaining how the teams of developers, the individual developers, and the project managers, working with the Agile processes and required behaviours, can inhibit the double loop learning required in an Agile adoption. A solution is then proposed to mitigate these negative impacts. Additionally, two new research processes are introduced to add to the Information Systems research toolkit.
Resumo:
An evolution in theoretical models and methodological paradigms for investigating cognitive biases in the addictions is discussed. Anomalies in traditional cognitive perspectives, and problems with the self-report methods which underpin them, are highlighted. An emergent body of cognitive research, contextualized within the principles and paradigms of cognitive neuropsychology rather than social learning theory, is presented which, it is argued, addresses these anomalies and problems. Evidence is presented that biases in the processing of addiction-related stimuli, and in the network of propositions which motivate addictive behaviours, occur at automatic, implicit and pre-conscious levels of awareness. It is suggested that methods which assess such implicit cognitive biases (e.g. Stroop, memory, priming and reaction-time paradigms) yield findings which have better predictive utility for ongoing behaviour than those biases determined by self-report methods of introspection. The potential utility of these findings for understanding "loss of control" phenomena, and the desynchrony between reported beliefs and intentions and ongoing addictive behaviours, is discussed. Applications to the practice of cognitive therapy are considered.
Resumo:
This chapter explores the nature of “learning” in games-based learning and the cognitive and motivational processes that might underpin that learning by drawing on psychological theories and perspectives. Firstly, changing conceptions of learning over the last few decades are reviewed. This is described in relation to the changes in formal learning theories and connections made between learning theory and GBL. Secondly, the chapter reviews empirical research on the learning outcomes that have been identified for GBL, with specific focus on cognitive benefits, school attainment, collaborative working, and the motivational and engaging appeal of games. Finally, an overview of the dominant theoretical perspectives/findings mostly associated with GBL is presented in an attempt to broaden understanding of the potential for GBL in the classroom.
Resumo:
This research explored the events that engaged graduate students in transformative learning within a graduate program in education. This context was chosen because one objective of a graduate program is to facilitate critical thinking and transformative learning. The question ofhow adult learners perceive and experience learning steered the direction ofthis study. However, the purpose ofthis research was to study critical incidents that led to profound cognitive and affective changes as perceived by the graduate students. Specifically, the questions to be answered were what critical incidents happened to graduate students while in the Master ofEducation program, how were the incidents experienced, and what transformation resulted? The research design evolved over the course of a year and was highly influenced by previous empirical studies and criticisms oftransformative learning theory. The overall design was qualitative and phenomenological. A critical and interpretive approach was made to empirical data collected through a critical incident questionnaire and in-depth interviews. Inductive analysis allowed theory to be built from the data by making comparisons. New questions emerged and attention was given to social context, the passage oftime, and sequence ofevents in order to give meaning and translation ofthe participants' experiences and to build the interpretive narratives. Deductive analysis was also used on the data and a blending ofthe two forms of analysis; this resulted in the development ofa foundational model for transformative learning to be built.The data revealed critical incidents outside ofthe graduate school program that occurred in childhood or adult life prior to graduate school. Since context of individuals' lives had been an important critique of past transformative learning models and studies, this research expanded the original boundaries of this study beyond graduate school to incorporate incidents that occurred outside of graduate school. Critical incidents were categorized into time-related, people-related, and circumstancerelated themes. It was clear that participants were influenced and molded by the stage oftheir life, personal experiences, familial and cultural conditioning, and even historic events. The model developed in this document fiom an overview ofthe fmdings identifies a four-stage process of life difficulty, disintegration, reintegration, and completion that all participants' followed. The blended analysis was revealed from the description ofhow the incidents were experienced by the participants. The final categories were what were the feelings, what was happening, and what was the enviromnent? The resulting transformation was initially only going to consider cognitive and affective changes, however, it was apparent that contextual changes also occurred for all participants, so this category was also included. The model was described with the construction metaphor of a building "foimdation" to illustrate the variety of conditions that are necessary for transformative learning to occur. Since this was an exploratory study, no prior models or processes were used in data analysis, however, it appeared that the model developed from this study incorporated existing models and provided a more encompassing life picture oftransformative learning.
Resumo:
The purpose of this qualitative research was to study the learning preferences and styles of management lawyers who work in Ontario's legal aid clinics. Data were gathered from two sources and analyzed using the constant comparison method. A preand postconference survey provided the principal data on clinic lawyers' learning preferences. Follow-up interviews were then conducted with 3 purposefully selected survey participants to explore their personal learning styles. Kolb's experiential learning theory provided the theoretical framework for discussing personal learning styles. The findings showed a general consistency among the lawyers to learn by listening to lectures and experts. This preference may suggest a lingering influence from law school training. The lawyers' more informal learning associated with daily practice, however, appeared to be guided by various learning styles. The learning style discussions provided some support for Kolb's model but also confirmed some shortcomings noted by other authors. Educators who design continuing education programs for lawyers may benefit from some insights gained from this exploratory research. This study adds to a limited but growing body of work on the learning preferences and styles of lawyers and suggests new questions for future research.
Resumo:
Active learning strategies based on several learning theories were incorporated during instruction sessions for second year Biological Sciences students. The instructional strategies described in this paper are based primarily on sociocultural and collaborative learning theory, with the goal being to expand the relatively small body of literature currently available that discusses the application of these learning theories to library instruction. The learning strategies employed successfully involved students in the learning process ensuring that the experiences were appropriate and effective. The researchers found that, as a result of these strategies (e.g. teaching moments based on the emerging needs of students) students’ interest in learning information literacy was increased and students interacted with information given to them as well as with their peers. Collaboration between the Librarians, Co-op Student and Senior Lab Instructor helped to enhance the learning experience for students and also revealed new aspects of the active learning experiences. The primary learning objective, which was to increase the students’ information skills in the Biological Sciences, was realized. The advantages of active learning were realized by both instructors and students. Advantages for students attained during these sessions include having their diverse learning styles addressed; increased interaction with and retention of information; increased responsibility for their own learning; the opportunity to value not only the instructors, but also themselves and their peers as sources of authority and knowledge; improved problem solving abilities; increased interest and opportunities for critical thinking, as a result of the actively exchanging information in a group. The primary advantage enjoyed by the instructors was the opportunity to collaborate with colleagues to reduce the preparation required to create effective library instruction sessions. Opportunities for further research were also discovered, including the degree to which “social loafing” plays a role in collaborative, active learning.
Resumo:
This thesis attempts to quantify the amount of information needed to learn certain tasks. The tasks chosen vary from learning functions in a Sobolev space using radial basis function networks to learning grammars in the principles and parameters framework of modern linguistic theory. These problems are analyzed from the perspective of computational learning theory and certain unifying perspectives emerge.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn and presented to the learner. In this paper, we consider the possibility of a more active learner who is allowed to choose his/her own examples. Our investigations are carried out in a function approximation setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes. We provide a general formulation of the problem and show how it can be regarded as sequential optimal recovery. We demonstrate the application of this general formulation to two special cases of functions on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An extensive investigation of the sample complexity of approximating these functions is conducted yielding both theoretical and empirical results on test functions. Our theoretical results (stated insPAC-style), along with the simulations demonstrate the superiority of our active scheme over both passive learning as well as classical optimal recovery. The analysis of active function approximation is conducted in a worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay, 1992).