A sharp concentration inequality with applications


Autoria(s): Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

We present a new general concentration-of-measure inequality and illustrate its power by applications in random combinatorics. The results find direct applications in some problems of learning theory.

Identificador

http://hdl.handle.net/10230/593

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #concentration of measure #vapnik-chervonenkis dimension #logarithmic sobolev inequalities #longest monotone subsequence #model selection
Tipo

info:eu-repo/semantics/workingPaper