628 resultados para Lanthanide squarate hydrates
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The oxysulfide compounds La2O2S:Eu and Y2O2S were obtained directly from thermodecomposition of the respective oxalate compounds under argon and sulfur vapor, the obtained compounds were analyzed by infrared spectroscopy, X ray diffraction and luminescence spectroscopy. The particle size distribution and crystalline habit of the compounds were observed by scanning electron microscopy. Although the particle size of the oxysulfide was found to be 30%-40% smaller than the precursor oxalates, the initial morphology was completely maintained, which indicates the occurrence of a topochemical reaction from oxalates to oxysulfides. © Gauthier-Villars.
Resumo:
Five new lanthanide(III) complexes of hydrocinnamic acid (Hcin), [Ln(cin)3(H2O)3]·3Hcin (Ln = Tb(III) (1), Dy(III) (2), Er(III) (3), Eu(III) (4) and Gd(III) (5)) have been synthesized and characterized. The X-ray structures of 1-5 reveal that all compounds are isostructural and that each lanthanide ion is nine-coordinated by oxygen atoms in an overall distorted tricapped trigonal-prismatic geometry. Six oxygen atoms are provided by carboxylate moieties, and the other three by water molecules. The supramolecular architectures of 1-5 show the presence of uncoordinated hydrocinnamic acid molecules which induce the formation of numerous hydrogen bonds. The photophysical properties of these complexes in the solid state at room temperature were studied using diffuse reflectance (DR), fluorescence excitation and emission spectra. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer, indicating that cin- ligands can act as intramolecular energy donors for Tb(III), Dy(III) and Eu(III) ions. © 2012 Elsevier B.V.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides or yttrium(III) (Tb-Lu, Y) and L is succinate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy, TG-DTA coupled to FTIR, elemental analysis, X-ray powder diffractometry and complexometry were used to characterize and study the thermal behavior of these compounds. For the terbium to thulium and yttrium compounds, the dehydration, as well the thermal decomposition of the anhydrous compound occurs in two consecutive steps, while ytterbium and lutetium the dehydration occurs in a single step. The results also led to information about the ligand's denticity, thermal stability and thermal decomposition of these compounds. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thermogravimetry (TG) up to 900°C, differential thermal analysis (DTA) up to 1100°C and gravimetric data up to 1200°C, have been used to study the thermal decomposition of ammonium selenate and of the double selenates of lanthanides, and yttrium, and ammonium. The results provided the composition and thermal stability and also an interpretation of the thermal decomposition mechanisms. © 1994.
Resumo:
Solid state chelates of general formula H[Ln(EDTA)] · nH2O (Ln = trivalent lanthanide (except for promethium) or yttrium; EDTA = ethylenediaminetetraacetate) were prepared. Thermogravimetry, differential thermal analysis. X-ray diffraction and complexometry were used to characterize and study the thermal stability and thermal decomposition of these compounds. © 1993.