850 resultados para IRREDUCIBLE REPRESENTATION
Resumo:
This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.
Resumo:
Women and Representation in Local Government opens up an opportunity to critique and move beyond suppositions and labels in relation to women in local government. Presenting a wealth of new empirical material, this book brings together international experts to examine and compare the presence of women at this level and features case studies on the US, UK, France, Germany, Spain, Finland, Uganda, China, Australia and New Zealand. Divided into four main sections, each explores a key theme related to the subject of women and representation in local government and engages with contemporary gender theory and the broader literature on women and politics. The contributors explore local government as a gendered environment; critiquing strategies to address the limited number of elected female members in local government and examine the impact of significant recent changes on local government through a gender lens. Addressing key questions of how gender equality can be achieved in this sector, it will be of strong interest to students and academics working in the fields of gender studies, local government and international politics.
Resumo:
A discussion of the pivotal theoretical and practical issue in the teaching of critical literacies: the relationship between representation and material social, economic and ecosystemic reality. The argument here is that models of critical literacy are contingent upon a principled and grounded pursuit of material social, economic and ecological realities 'outside' of textual representation per se.
Resumo:
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.
Resumo:
The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.
Resumo:
Starting with the incident now known as the Cow’s Head Protest, this article traces and unpacks the events, techniques, and conditions surrounding the representation of ethno-religious minorities in Malaysia. The author suggests that the Malaysian Indians’ struggle to correct the dominant reading of their community as an impoverished and humbled underclass is a disruption of the dominant cultural order in Malaysia. It is also among the key events to have has set in motion a set of dynamics—the visual turn—introduced by new media into the politics of ethno-communal representation in Malaysia. Believing that this situation requires urgent examination the author attempts to outline the problematics of the task.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.
Resumo:
A significant gap exists in the Australian research literature on the disproportionate over-representation of minority groups in special education. The aim of this paper is to make a contribution to the research evidence-base by sketching an outline of the issue as it presents in Australia’s largest education system in the state of New South Wales. Findings from this research show that Indigenous students are equally represented in special schools enrolling students with autism, physical, sensory, and intellectual disabilities, but significantly over-represented in special schools enrolling students under the categories of emotional disturbance, behaviour disorder and juvenile detention. Factors that might influence the disproportionate over-representation of Indigenous children and young people are discussed, and based on these observations, some practical implications for policy and practice are provided.