949 resultados para High-order harmonic generations
Resumo:
This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.
Resumo:
We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible discontinuous Galerkin Navier?Stokes solver, provides very similar results to classical linear instability analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier?Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the linearised Navier?Stokes equations, and showing the potential of this type of analysis based on snapshots to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD technique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised and adjoint linearised Navier?Stokes equations advanced in time. Subsequently, these modes are used to provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and complex geometries, at an affordable computational cost. The information provided by the sensitivity study is used to modify the L-shaped geometry and control the most unstable 3D mode.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.
Resumo:
We have generated attosecond pulse trains in an ensemble of randomly aligned nitrogen molecules. Measurements of the high-order harmonic relative phases and amplitudes allow us to reconstruct the temporal profile of the attosecond pulses. We show that in the considered spectral range, the latter is very similar to the pulse train generated in argon under the same conditions. We discuss the possible influence of the molecular structure in the generation process, and how it can induce subtle differences on the relative phases.
Resumo:
Plasmabasierte Röntgenlaser sind aufgrund ihrer kurzen Wellenlänge und schma-rnlen spektralen Bandbreite attraktive Diagnose-Instrumente in einer Vielzahl potentieller Anwendungen, beispielsweise in den Bereichen Spektroskopie, Mikroskopie und EUV-Lithografie. Dennoch sind Röntgenlaser zum heutigen Stand noch nicht sehr weit verbreitet, was vorwiegend auf eine zu geringe Pulsenergie und für manche Anwendungen nicht hinreichende Strahlqualität zurückzuführen ist. In diesem Zusammenhang wurden in den letzten Jahren bedeutende Fortschritte erzielt. Die gleichzeitige Weiterentwicklung von Pumplasersystemen und Pumpmechanismen ermöglichte es, kompakte Röntgenlaserquellen mit bis zu 100 Hz zu betreiben. Um gleichzeitig höhere Pulsenergien, höhere Strahlqualität und volle räumliche Kohärenz zu erhalten, wurden intensive Studien theoretischer und experimenteller Natur durchgeführt. In diesem Kontext wurde in der vorliegenden Arbeit ein experimenteller Aufbau zur Kombination von zwei Röntgenlaser-Targets entwickelt, die sogenannte Butterfly-Konfiguration. Der erste Röntgenlaser wird dabei als sogenannter Seed für das zweite, als Verstärker dienende Röntgenlasermedium verwendet (injection-seeding). Aufrndiese Weise werden störende Effekte vermieden, welche beim Entstehungsprozessrndes Röntgenlasers durch die Verstärkung von spontaner Emission zustande kom-rnmen. Unter Verwendung des ebenfalls an der GSI entwickelten Double-Pulse Gra-rnzing Incidence Pumpschemas ermöglicht das hier vorgestellte Konzept, erstmaligrnbeide Röntgenlasertargets effizient und inklusive Wanderwellenanregung zu pum-rnpen.rnBei einer ersten experimentellen Umsetzung gelang die Erzeugung verstärkter Silber-Röntgenlaserpulse von 1 µJ bei 13.9 nm Wellenlänge. Anhand der gewonnenen Daten erfolgte neben dem Nachweis der Verstärkung die Bestimmung der Lebensdauer der Besetzungsinversion zu 3 ps. In einem Nachfolgeexperiment wurden die Eigenschaften eines Molybdän-Röntgenlaserplasmas näher untersucht. Neben dem bisher an der GSI angewandten Pumpschema kam in dieser Strahlzeit noch eine weitere Technik zum Einsatz, welche auf einem zusätzlichen Pumppuls basierte. In beiden Schemata gelang neben dem Nachweis der Verstärkung die zeitliche und räumliche Charakterisierung des Verstärkermediums. Röntgenlaserpulse mit bis zu 240 nJ bei einer Wellenlänge von 18.9 nm wurden nachgewiesen. Die erreichte Brillanz der verstärkten Pulse lag ca. zwei Größenordnungen über der des ursprünglichen Seeds und mehr als eine Größenordnung über der Brillanz eines Röntgenlasers, dessen Erzeugung auf der Verwendung eines einzelnen Targets basierte. Das in dieser Arbeitrnentwickelte und experimentell verifizierte Konzept birgt somit das Potential, extrem brillante plasmabasierte Röntgenlaser mit vollständiger räumlicher und zeitlicher Kohärenz zu erzeugen.rnDie in dieser Arbeit diskutierten Ergebnisse sind ein wesentlicher Beitrag zu der Entwicklung eines Röntgenlasers, der bei spektroskopischen Untersuchungen von hochgeladenen Schwerionen eingesetzt werden soll. Diese Experimente sind amrnExperimentierspeicherring der GSI und zukünftig auch am High-Energy StoragernRing der FAIR-Anlage vorgesehen.rn
Resumo:
Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
The main target here is to determine the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms implemented through sequential Givens rotations as a method of estimation, with the aim of improving the performance of the orbit estimation process and, at the same time, minimizing the computational procedure cost. Geopotential perturbations up to high order and direct solar radiation pressure were taken into account. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. An application has been done, using real data from the Topex/Poseidon satellite, whose ephemeris is available at Internet. The best accuracy obtained in position was smaller than 5 meters for short period (2 hours) and smaller than 28 meters for long period (24 hours) orbit determination. In both cases, the perturbations mentioned before were taken into consideration and the analysis occurred without selective availability on the signals measurements.
Resumo:
This work investigates the harmonic distortion (HD) in 2-MOS balanced structures composed of triple gate FinFETs. HD has been evaluated through the determination of the third-order harmonic distortion (HD3), since this represents the major non-linearity source in balanced structures. The 2-MOS structures with devices of different channel lengths (L) and fin widths (W(fin)) have been studied operating in the linear region as tunable resistors. The analysis was performed as a function of the gate voltage, aiming to verify the correlation between operation bias and HD3. The physical origins of the non-linearities have been investigated and are pointed out. Being a resistive circuit, the 2-MOS structure is generally projected for a targeted on-resistance, which has also been evaluated in terms of HD3. The impact of the application of biaxial strain has been studied for FinFETs of different dimensions. It has been noted that HD3 reduces with the increase of the gate bias for all the devices and this reduction is more pronounced both in narrower and in longer devices. Also, the presence of strain slightly diminishes the non-linearity at a similar bias. However, a drawback associated with the use of strain engineering consists in a significant reduction of the on-resistance with respect to unstrained devices. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.
Resumo:
In this work we present the formulas for the calculation of exact three-center electron sharing indices (3c-ESI) and introduce two new approximate expressions for correlated wave functions. The 3c-ESI uses the third-order density, the diagonal of the third-order reduced density matrix, but the approximations suggested in this work only involve natural orbitals and occupancies. In addition, the first calculations of 3c-ESI using Valdemoro's, Nakatsuji's and Mazziotti's approximation for the third-order reduced density matrix are also presented for comparison. Our results on a test set of molecules, including 32 3c-ESI values, prove that the new approximation based on the cubic root of natural occupancies performs the best, yielding absolute errors below 0.07 and an average absolute error of 0.015. Furthemore, this approximation seems to be rather insensitive to the amount of electron correlation present in the system. This newly developed methodology provides a computational inexpensive method to calculate 3c-ESI from correlated wave functions and opens new avenues to approximate high-order reduced density matrices in other contexts, such as the contracted Schrödinger equation and the anti-Hermitian contracted Schrödinger equation
Resumo:
Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás