261 resultados para HETEROSTRUCTURE
Resumo:
A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.
Resumo:
A novel idea of InAlAs native oxide utilized to replace the p-n-p-n thyristor blocking layer and improve the high-temperature performance of buried heterostructure InGaAsP-InP laser is first proposed and demonstrated. A characteristic temperature (T-0) of 50 K is achieved from an InA1As native oxide buried heterostructure (NOBH) InGaAsP-InP multiquantum-well laser with 1.5-mu m-wide diode leakage passage path. The threshold current and slope efficiency of NOBH laser changes from 5.6 mA, 0.23 mW/mA to 28 mA, 0.11 mW/mA with the operating temperature changing from 20 degrees C to 100 degrees C. It is comparable to conventional p-n reverse biased junction BH laser with minimized diode leakage current, and is much better than the buried ridge strip with proton implanted laterally confinement laser.
Resumo:
An InAlAs native oxide is used to replace the p-n reverse-biased junction in a conventional buried heterostructure InP-based laser. This technique reduces the number of regrowth steps and eliminates leakage current under high-temperature operation. The InAlAs native oxide buried heterostructure (NOBH) laser with strain-compensated InGaAsP/InP multiple quantum well active layers has a threshold current of 5.6 mA, a slope efficiency of 0.23 mW/mA, and a linear power up to 22.5 mW with a HR-coated facet. It exhibits single transverse mode with lasing wavelength at 1.532 mu m. A characteristic temperature (T-0) of 50 K is obtained from the NOBH laser with a nonoptimized oxide layer width. (C) 1998 American Institute of Physics. [S0003-6951(98)01352-7].
Resumo:
Epitaxial cerium dioxide films on single-crystal silicon substrates (CeO2/Si) have been grown by a dual mass-analyzed low-energy ion beam deposition (IBD) system. By double-crystal X-ray diffraction (XRD), Full Width at Half Maximum (FWHM) are 23' and 33' in the rocking curves for (222) and (111) faces of the CeO2 film, respectively, and the lattice-mismatch Delta a/a with the substrate is about - 0.123%. The results show that the CeO2/Si grown by IBD is of high crystalline quality. In this work, the CeO2/Si heterostructure were investigated by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) measurements. Especially, XPS and AES depth profiling was used to analyze the compositions and structures in the interface regions of the as-grown and post-annealed CeO2/Si. It was found that there was no silicon oxide in the interface region of the as-grown sample but silicon oxide in the post-annealed sample. The reason for obtaining such high quality heterostructure mainly depends on the absence of silicon oxide in the surface at the beginning of the deposition. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In this letter, we report on the observation of Fermi-edge singularity in a modulation-doped AlGaN/GaN heterostructure grown on a c-face sapphire substrate by NH3 source molecular beam epitaxy. The two-dimensional electron gas (2DEG) characteristic of the structure is manifested by variable temperature Hall effect measurements down to 7 K. Low-temperature photoluminescence (PL) spectra show a broad emission band originating from the recombination of the 2DEG and localized holes. The enhancement in PL intensity in the high-energy side approaching Fermi level was observed at temperatures below 20 K. At higher temperatures, the enhancement disappears because of the thermal broadening of the Fermi edge. (C) 1998 American Institute of Physics. [S0003-6951(98)02543-1].
Resumo:
Using NH3 cracked on the growing surface as the nitrogen precursor, an AlGaN/GaN modulation-doped (MD) heterostructure without a buffer layer was grown on a nitridated sapphire substrate in a home-made molecular beam epitaxy (MBE) system. Though the Al composition is as low as 0.036, as deduced from photoluminescence (PL) measurements, the AlGaN barrier layer can be an efficient carrier supplier for the formation of a two-dimensional electron gas (2DEG) at the heterointerface. The 2DEG characteristics are verified by the variable temperature Hall measurements down to 7 K. Using a parallel conduction model, we estimate the actual mobility of the 2DEG to be 1100 cm(2)/V s as the sheet carrier density to be 1.0 x 10(12) cm(-2). Our results show that the AlGaN/GaN system is very suitable for the fabrication of high electron mobility transistors (HEMTs). (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
When an intersubband relaxation is involved in vertical transport in a tunneling heterostructure, the magnetic suppression of the intersubband LO or LA phonon scattering may also give rise to a noticeable depression of the resonant tunneling current, unrelated to the Coulomb correlation effect. The slowdown of the intersubband scattering rate makes fewer electrons able to tunnel resonantly between two adjacent quantum wells (QWs) in a three-barrier, two-well heterostructure. The influence of the magnetic field on the intersubband relaxation can be studied in an explicit way by a physical model based on the dynamics of carrier populations in the ground and excited subbands of the incident QW. (C) 1998 American Institute of Physics. [S0003-6951(98)00925-5].
Resumo:
It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As/InP heterostructure that misfit dislocation lines deviate from the [110] directions at a certain angle depending on the indium content x. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on the misfit dislocations in the interface between the III-V ternary compounds.
Resumo:
The population of the third (n = 3) two-dimensional electron subband of InGaAs/InAlAs modulation-doped structures has been observed by means of Fourier transform photoluminescence (PL). Three well resolved PL peaks centred at 0.737, 0.908, and 0.980eV are observed, which are attributed to the transitions from the lowest three electron subbands to the n = 1 heavy-hole subband. The subband separations clearly exhibiting the features of the stepped quantum well with triangle and square potentials are consistent with numerical calculation. Thanks to the presence of Fermi cutoff, the population ratio of these three subbands can be estimated. Temperature- and excitation-dependent luminescences are also analyzed.
Alignment of misfit dislocations in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As/InP heterostructure
Resumo:
It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As system grown on the (001) InP substrate that misfit dislocation lines deviate [110] directions at an angle with its value depending on the gallium content. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on misfit dislocations in the interface between the III-V ternary compounds. (C) 1998 American Institute of Physics.
Resumo:
The narrow stripe selective growth of the InGaAlAs bulk waveguides and InGaAlAs MQW waveguides was first investigated. Flat and clear interfaces were obtained for the selectively grown InGaAlAs waveguides under optimized growth conditions. These selectively grown InGaAlAs waveguides were covered by specific InP layers, which can keep the waveguides from being oxidized during the fabrication of devices. PL peak wavelength shifts of 70 nm for the InGaAlAs bulk waveguides and 73 nm for the InGaAlAs MQW waveguides were obtained with a small mask stripe width varying from 0 to 40 gm, and were interpreted in considering both the migration effect from the masked region (MMR) and the lateral vapor diffusion effect (LVD). The quality of the selectively grown InGaAlAs MQW waveguides was confirmed by the PL peak intensity and the PL FWHM. Using the narrow stripe selectively grown InGaAlAs MQW waveguides, then the buried heterostructure (BH) lasers were fabricated by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good performance characteristics, with a high internal differential quantum efficiency of about 85% and an internal loss of 6.7 cm(-1).
Resumo:
The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.
Resumo:
A very low CW threshold current of 1.65 mA at room temperature was obtained for an uncoated buried-heterostructure strained layer multiquantum well InGaAs-GaAs laser fabricated using hybrid molecular beam epitaxy and liquid phase epitaxy crystal growth technique. External differential quantum efficiency as high as 44.6% (0.53 mW/mA) and output power of more than 30 mW per facet were achieved in the same laser.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.