65 resultados para Fluorochrome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the search for the ideal bone substitute has been the focus of a large number of studies, autogenous bone is still the gold standard for the filling of defects caused by pathologies and traumas, and mainly, for alveolar ridge reconstruction, allowing the titanium implants installation. OBJECTIVES: The aim of this study was to evaluate the dynamics of autogenous bone graft incorporation process to surgically created defects in rat calvaria, using epifluorescence microscopy. MATERIAL AND METHODS: Five adult male rats weighing 200-300 g were used. The animals received two 5-mm-diameter bone defects bilaterally in each parietal bone with a trephine bur under general anesthesia. Two groups of defects were formed: a control group (n=5), in which the defects were filled with blood clot, and a graft group (n=5), in which the defects were filled with autogenous bone block, removed from the contralateral defect. The fluorochromes calcein and alizarin were applied at the 7th and 30th postoperative days, respectively. The animals were killed at 35 days. RESULTS: The mineralization process was more intense in the graft group (32.09%) and occurred mainly between 7 and 30 days, the period labeled by calcein (24.66%). CONCLUSIONS: The fluorochromes showed to be appropriate to label mineralization areas. The interfacial areas between fluorochrome labels are important sources of information about the bone regeneration dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung Mittels Fluoreszenzfarbstoffen können Strukturen sichtbar gemacht werden, die auf kon-ventionellem Weg nicht, oder nur schwer darzustellen sind. Besonders in Kombination mit der Konfokalen Laser Scanning Mikroskopie eröffnen sich neue Wege zum spezifischen Nachweis unterschiedlichster Komponenten biologischer Proben und gegebenenfalls deren dreidimensionale Widergabe.Die Visualisierung des Proteinanteils des Zahnhartgewebes kann mit Hilfe chemisch kopplungsfähiger Fluorochrome durchgeführt werden. Um zu zeigen, daß es sich bei dieser Markierung nicht um unspezifische Adsorption des Farbstoffes handelt, wurde zur Kontrolle die Proteinkomponente der Zahnproben durch enzymatischen Verdau beseitigt. Derartig behandelte Präparate wiesen eine sehr geringe Anfärbbarkeit auf.Weiterführend diente diese enzymatische Methode als Negativkontrolle zum Nachweis der Odontoblastenfortsätze im Dentin bzw. im Bereich der Schmelz-Dentin-Grenze. Hiermit konnte differenziert werden zwischen reinen Reflexionsbildern der Dentinkanäle und den Zellausläufern deren Membranen gezielt durch lipophile Fluoreszenzfarbstoffe markiert wurden.In einem weiteren Ansatz konnte gezeigt werden, daß reduzierte und daher nichtfluoreszente Fluoresceinabkömmlinge geeignet sind, die Penetration von Oxidationsmitteln (hier H2O2) in den Zahn nachzuweisen. Durch Oxidation dieser Verbindungen werden fluoreszierende Produkte generiert, die den Nachweis lieferten, daß die als Zahnbleichmittel eingesetzten Mittel rasch durch Schmelz und Dentin bis in die Pulpahöhle gelangen können.Die Abhängigkeit der Fluoreszenz bestimmter Fluorochrome von deren chemischer Um-gebung, im vorliegenden Fall dem pH-Wert, sollte eingesetzt werden, um den Säuregrad im Zahninneren fluoreszenzmikroskopisch darzustellen. Hierbei wurde versucht, ein ratio-metrisches Verfahren zu entwickeln, mit dem die pH-Bestimmung unter Verwendung eines pH-abhängigen und eines pH-unabhängigen Fluorochroms erfolgt. Diese Methode konnte nicht für diese spezielle Anwendung verifiziert werden, da Neutralisationseffekte der mineralischen Zahnsubstanz (Hydroxylapatit) die pH-Verteilung innerhalb der Probe beeinflußen. Fluoreszenztechniken wurden ebenfalls ergänzend eingesetzt zur Charakterisierung von kovalent modifizierten Implantatoberflächen. Die, durch Silanisierung von Titantestkörpern mit Triethoxyaminopropylsilan eingeführten freien Aminogruppen konnten qualitativ durch den Einsatz eines aminspezifischen Farbstoffes identifiziert werden. Diese Art der Funktionalisierung dient dem Zweck, Implantatoberflächen durch chemische Kopplung adhäsionsvermittelnder Proteine bzw. Peptide dem Einheilungsprozeß von Implantaten in den Knochen zugänglicher zu machen, indem knochenbildende Zellen zu verbessertem Anwachsverhalten stimuliert werden. Die Zellzahlbestimmung im Adhäsionstest wurde ebenfalls mittels Fluoreszenzfarbstoffen durchgeführt und lieferte Ergebnisse, die belegen, daß die durchgeführte Modifizierung einen günstigen Einfluß auf die Zelladhäsion besitzt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most potent cell type for capture, processing, and presentation of antigens. They are able to activate naïve T cells as well as to initiate memory T-cell immune responses. T lymphocytes are key elements in eliciting cellular immunity against bacteria and viruses as well as in the generation of anti-tumor and anti-leukemia immune responses. Because of their central position in the immunological network, specific manipulations of these cell types provide promising possibilities for novel immunotherapies. Nanoparticles (NP) that have just recently been investigated for use as carriers of drugs or imaging agents, are well suited for therapeutic applications in vitro and also in vivo since they can be addressed to cells with a high target specificity upon surface functionalization. As a first prerequisite, an efficient in vitro labeling of cells with NP has to be established. In this work we developed protocols allowing an effective loading of human monocyte-derived DCs and primary antigen-specific T cells with newly designed NP without affecting biological cell functions. Polystyrene NP that have been synthesized by the miniemulsion technique contained perylenmonoimide (PMI) as a fluorochrome, allowing the rapid determination of intracellular uptake by flow cytometry. To confirm intracellular localization, NP-loaded cells were analyzed by confocal laser scanning microscopy (cLSM) and transmission electron microscopy (TEM). Functional analyses of NP-loaded cells were performed by IFN-γ ELISPOT, 51Chromium-release, and 3H-thymidine proliferation assays. In the first part of this study, we observed strong labeling of DCs with amino-functionalized NP. Even after 8 days 95% of DCs had retained nanoparticles with a median fluorescence intensity of 67% compared to day 1. NP loading did not influence expression of cell surface molecules that are specific for mature DCs (mDCs) nor did it influence the immunostimulatory capacity of mDCs. This procedure did also not impair the capability of DCs for uptake, processing and presentation of viral antigens that has not been shown before for NP in DCs. In the second part of this work, the protocol was adapted to the very different conditions with T lymphocytes. We used leukemia-, tumor-, and allo-human leukocyte antigen (HLA) reactive CD8+ or CD4+ T cells as model systems. Our data showed that amino-functionalized NP were taken up very efficiently also by T lymphocytes, which usually had a lower capacity for NP incorporation compared to other cell types. In contrast to DCs, T cells released 70-90% of incorporated NP during the first 24 h, which points to the need to escape from intracellular uptake pathways before export to the outside can occur. Preliminary data with biodegradable nanocapsules (NC) revealed that encapsulated cargo molecules could, in principle, escape from the endolysosomal compartment after loading into T lymphocytes. T cell function was not influenced by NP load at low to intermediate concentrations of 25 to 150 μg/mL. Overall, our data suggest that NP and NC are promising tools for the delivery of drugs, antigens, and other molecules into DCs and T lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung eines nichtviralen, effizienten Transfektionsmittels mit einer Kern-Schale-Struktur in der Größenordnung bis 100 nm. Dafür werden magnetische, negativ geladene Eisenoxid-Nanopartikel mittels Thermolyse mit einem Durchmesser von 17 nm synthetisiert und in Wasser überführt. Diese Nanopartikel bilden den Kern des Erbgut-Trägers und werden mittels Layer-by-Layer –Verfahren (LbL) mit geladenen Polymeren, den bioabbaubaren Makromolekülen Poly-L-Lysin und Heparin, beschichtet. Dafür wird zunächst eine geeignete Apparatur aufgebaut. Diese wird zur Herstellung von Kern-Schale-Strukturen mit fünf Polyelektrolytschichten verwendet und liefert Partikel mit einem hydrodynamischen Durchmesser von 58 nm, die bei Abwesenheit von niedermolekularem Salz aggregatfrei sind. Das System wird gegen Salz stabilisiert, indem die letzte Poly-L-Lysin-Schicht mit Polyethylenglycol modifiziert wird. Die so entstandenen Multischalenpartikel zeigen weder im PBS-Puffer noch in humanem Serum Aggregation. Mittels winkelabhängiger dynamischer Lichtstreuung wird die Aggregatbildung kontrolliert, während ζ-Potential-Messungen die Kontrolle der Oberflächenladung erlauben.rnDa siRNA auf Grund ihres negativ geladenen Phosphat-Rückgrats ebenfalls ein Polyelektrolyt ist, wird sie aggregatfrei auf die positiv geladenen PLL-Nanopartikel aufgetragen. Die eingesetzte siRNA ist farbstoffmarkiert, um eine Detektion in vitro zu ermöglichen. Jedoch sind die entstandenen Komplexe mittels Fluoreszenzkorrelations-spektroskopie (FCS) nicht nachweisbar. Auch die Fluoreszenzmarkierung der PEGylierten Außenschale mittels kupferfreier Click-Chemie ist in der FCS nicht sichtbar, sodass eine Fluoreszenzauslöschung der Farbstoffe in den Multischalenpartikeln vermutet wird.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate if radial extracorporeal shock wave therapy (rESWT) induces new bone formation and to study the time course of ESWT-induced osteogenesis. A total of 4000 impulses of radial shock waves (0.16 mJ/mm²) were applied to one hind leg of 13 New Zealand white rabbits with the contralateral side used for control. Treatment was repeated after 7 days. Fluorochrome sequence labeling of new bone formation was performed by subcutaneous injection of tetracycline, calcein green, alizarin red and calcein blue. Animals were sacrificed 2 weeks (n = 4), 4 weeks (n = 4) and 6 weeks (n = 5) after the first rESWT and bone sections were analyzed by fluorescence microscopy. Deposits of fluorochromes were classified and analyzed for significance with the Fisher exact test. rESWT significantly increased new bone formation at all time points over the 6-week study period. Intensity of ossification reached a peak after 4 weeks and declined at the end of the study. New bone formation was significantly higher and persisted longer at the ventral cortex, which was located in the direction to the shock wave device, compared with the dorsal cortex, emphasizing the dose-dependent process of ESWT-induced osteogenesis. No traumata, such as hemorrhage, periosteal detachment or microfractures, were observed by histologic and radiologic assessment. This is the first study demonstrating low-energy radial shock waves to induce new bone formation in vivo. Based on our results, repetition of ESWT in 6-week intervals can be recommended. Application to bone regions at increased fracture risk (e.g., in osteoporosis) are possible clinical indications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many intracellular signal transduction events involve the reversible shuttling of proteins between the cytoplasm and the nucleus. Study of these processes requires imaging information on the protein localization in a given cell and a large number of measurements to obtain sufficient statistics on the protein localization in the whole population. The protocol describes method for quantitative imaging flow cytometry analysis of intracellular distribution of NF-kappaB in ARPE-19 cells stained with specific fluorochrome-conjugated antibodies. The described technique alone or in combination with standard flow cytometry methods can be applied to study any protein undergoing translocation from cytoplasm into the nucleus in a variety of cell lines as well as in heterogeneous primary cell populations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thecosome pteropods (shelled pelagic molluscs) can play an important role in the food web of various ecosystems and play a key role in the cycling of carbon and carbonate. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The impact of changes in the carbonate chemistry was investigated on Limacina helicina, a key species of Arctic ecosystems. Pteropods were kept in culture under controlled pH conditions corresponding to pCO2 levels of 350 and 760 µatm. Calcification was estimated using a fluorochrome and the radioisotope 45Ca. It exhibits a 28 % decrease at the pH value expected for 2100 compared to the present pH value. This result supports the concern for the future of pteropods in a high-CO2 world, as well as of those species dependent upon them as a food resource. A decline of their populations would likely cause dramatic changes to the structure, function and services of polar ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently, cinematographic film was largely cellulose-triacetate-based. However, this material is highly susceptible to biodeterioration, thus placing historic film collections, an important part of the cultural heritage of many countries, at risk. In the present study, samples taken from several biodeteriorated color cinematographic films belonging to the collection of the Cuban Institute for Cinematographic Industry and Arts (ICAIC) were investigated. Infrared spectroscopy showed that all films were of the same composition, i.e., a gelatin emulsion coating one side of a cellulose-triacetate-based film support. The films were analyzed by environmental scanning electron microscopy and scanning electron microscopy to determine the degree of biodeterioration and the type of colonizing microorganisms. Significant fungal colonization was found on both sides of the films in all samples, with a higher concentration of fungi on the gelatin emulsion side. Epifluorescence microscopy of fluorochrome-dyed films demonstrated that some of the fungi were still active, indicating that the films under study, and probably others at the ICAIC, are at risk of further deterioration. Fungi were identified by molecular biology techniques. The fungi mainly responsible for the observed biodeterioration were those belonging to the genera Aspergillus and Cladosporium, although other genera, such as Microascus and Penicillium, were identified as well. In accordance with the findings described herein, the existing guidelines for the prevention and control of film biodeterioration are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripheral blood leukocytes incubated with a semisynthetic phage antibody library and fluorochrome-labeled CD3 and CD20 antibodies were used to isolate human single-chain Fv antibodies specific for subsets of blood leukocytes by flow cytometry. Isolated phage antibodies showed exclusive binding to the subpopulation used for selection or displayed additional binding to a restricted population of other cells in the mixture. At least two phage antibodies appeared to display hitherto-unknown staining patterns of B-lineage cells. This approach provides a subtractive procedure to rapidly obtain human antibodies against known and novel surface antigens in their native configuration, expressed on phenotypically defined subpopulations of cells. This approach does not depend on immunization procedures or the necessity to repeatedly construct phage antibody libraries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The planktonic diatom Fragilariopsis kerguelensis plays an important role in the biogeochemical cycles of the Southern Ocean, where remains of its frustules form the largest deposit of biogenic silica anywhere in the world. We assessed the genetic identity of 26 strains, from cells collected at various sites in the Southern Ocean, using three molecular markers, LSU and ITS rDNA and rbcL. The LSU sequences were identical among the tested strains, ITS sequences were highly similar, and only one base pair difference was detected among the rbcL sequences. These results, together with a large number of successful mating experiments demonstrated that the strains belong to a single biological species. We investigated the mating system and life cycle traits of F. kerguelensis. Cell size diminished gradually in clonal strains. Gamete formation only occurred when strains of opposite mating type - within a cell size range of 7-36 µm - were mixed together. Two binucleate gametes were formed in each gametangium and gamete conjugation produced a zygote that had four nuclei and was surrounded by thin siliceous scales. Two out of the four nuclei subsequently degenerated and the zygote expanded to form an auxospore surrounded by a transverse and a longitudinal perizonium. Staining with the fluorochrome PDMPO provided for the first time a clear demonstration that the longitudinal perizonium is formed after auxospore expansion is complete. Initial cells produced within the mature auxospores were 78-101 µm in length. Various authors have shown that the average valve size of F. kerguelensis varies in sediment samples collected in regions and seasons with different primary production regimes and this parameter has thus been proposed as a biological proxy for palaeo-productivity. A better understanding of the life cycle of F. kerguelensis should help the design of future investigations aimed at testing the link between cell size distribution in the natural environment and the role that environmental factors might have in the regulation of population cell size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.