994 resultados para Finite embeddability property


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a finite difference scheme, with the TVD (total variation diminishing) property, for scalar conservation laws. The scheme applies to non-uniform meshes, allowing for variable mesh spacing, and is without upstream weighting. When applied to systems of conservation laws, no scalar decomposition is required, nor are any artificial tuning parameters, and this leads to an efficient, robust algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Hennessy-Milner property. Complete characterizations are obtained in the case of many-valued modal logics based on BL-chains (divisible MTL-chains) that are finite or have universe [0,1], including crisp Lukasiewicz, Gödel, and product modal logics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A characterization of a property of binary relations is of finite type if it is stated in terms of ordered T-tuples of alternatives for some positive integer T. A characterization of finite type can be used to determine in polynomial time whether a binary relation over a finite set has the property characterized. Unfortunately, Pareto representability in R2 has no characterization of finite type (Knoblauch, 2002). This result is generalized below Rl, l larger than 2. The method of proof is applied to other properties of binary relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a large class of finite factors has free entropy dimension less than or equal to one. This class includes all prime factors and many property T factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗ The first named author’s research was partially supported by GAUK grant no. 350, partially by the Italian CNR. Both supports are gratefully acknowledged. The second author was supported by funds of Italian Ministery of University and by funds of the University of Trieste (40% and 60%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗ Supported by D.G.I.C.Y.T. Project No. PB93-1142

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46B20. Secondary 47A99, 46B42.