970 resultados para Fault model
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
Singapore crash statistics from 2001 to 2006 show that the motorcyclist fatality and injury rates per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as victims of other road users is also about 43%. The objective of this study is to identify the factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the binary logit model to differentiate between at-fault and not-at-fault cases and the analysis is further categorized by the location of the crashes, i.e., at intersections, on expressways and at non-intersections. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Time trend effect shows that not-at-fault crash involvement of motorcyclists has increased with time. The likelihood of night time crashes has also increased for not-at-fault crashes at intersections and expressways. The presence of surveillance cameras is effective in reducing not-at-fault crashes at intersections. Wet road surfaces increase at-fault crash involvement at non-intersections. At intersections, not-at-fault crash involvement is more likely on single lane roads or on median lane of multi-lane roads, while on expressways at-fault crash involvement is more likely on the median lane. Roads with higher speed limit have higher at-fault crash involvement and this is also true on expressways. Motorcycles with pillion passengers or with higher engine capacity have higher likelihood of being at-fault in crashes on expressways. Motorcyclists are more likely to be at-fault in collisions involving pedestrians and this effect is higher at night. In multi-vehicle crashes, motorcyclists are more likely to be victims than at fault. Young and older riders are more likely to be at-fault in crashes than middle-aged group of riders. The findings of this study will help to develop more targeted countermeasures to improve motorcycle safety and more cost-effective safety awareness program in motorcyclist training.
Resumo:
The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.
Resumo:
In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedule of production if necessary. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of bearings based on health state probability estimation and historical knowledge embedded in the closed loop diagnostics and prognostics system. The technique uses the Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation process to provide long term prediction. To validate the feasibility of the proposed model, real life fault historical data from bearings of High Pressure-Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life (RUL). The results obtained were very encouraging and showed that the proposed prognosis system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
In this paper, a framework for isolating unprecedented faults for an EGR valve system is presented. Using normal behavior data generated by a high fidelity engine simulation, the recently introduced Growing Structure Multiple Model System (GSMMS) is used to construct models of normal behavior for an EGR valve system and its various subsystems. Using the GSMMS models as a foundation, anomalous behavior of the entire system is then detected as statistically significant departures of the most recent modeling residuals from the modeling residuals during normal behavior. By reconnecting anomaly detectors to the constituent subsystems, the anomaly can be isolated without the need for prior training using faulty data. Furthermore, faults that were previously encountered (and modeled) are recognized using the same approach as the anomaly detectors.
Resumo:
In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.