951 resultados para Epigenetic Modifications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated T helper (Th) cells have ability to differentiate into functionally distinct Th1, Th2 and Th17 subsets through a series of overlapping networks that include signaling and transcriptional control and the epigenetic mechanisms to direct immune responses. However, inappropriate execution in the differentiation process and abnormal function of these Th cells can lead to the development of several immune mediated diseases. Therefore, the thesis aimed at identifying genes and gene regulatory mechanisms responsible for Th17 differentiation and to study epigenetic changes associated with early stage of Th1/Th2 cell differentiation. Genome wide transcriptional profiling during early stages of human Th17 cell differentiation demonstrated differential regulation of several novel and currently known genes associated with Th17 differentiation. Selected candidate genes were further validated at protein level and their specificity for Th17 as compared to other T helper subsets was analyzed. Moreover, combination of RNA interference-mediated downregulation of gene expression, genome-wide transcriptome profiling and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq), combined with computational data integration lead to the identification of direct and indirect target genes of STAT3, which is a pivotal upstream transcription factor for Th17 cell polarization. Results indicated that STAT3 directly regulates the expression of several genes that are known to play a role in activation, differentiation, proliferation, and survival of Th17 cells. These results provide a basis for constructing a network regulating gene expression during early human Th17 differentiation. Th1 and Th2 lineage specific enhancers were identified from genome-wide maps of histone modifications generated from the cells differentiating towards Th1 and Th2 lineages at 72h. Further analysis of lineage-specific enhancers revealed known and novel transcription factors that potentially control lineage-specific gene expression. Finally, we found an overlap of a subset of enhancers with SNPs associated with autoimmune diseases through GWASs suggesting a potential role for enhancer elements in the disease development. In conclusion, the results obtained have extended our knowledge of Th differentiation and provided new mechanistic insights into dysregulation of Th cell differentiation in human immune mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le long bio-polymère d'ADN est condensé à l’intérieur du noyau des cellules eukaryotes à l'aide de petites protéines appelées histones. En plus de leurs fonctions condensatrices,ces histones sont également la cible de nombreuses modifications post-traductionnelles(MPT), particulièrement au niveau de leur section N-terminale. Ces modifications réversibles font partie d’un code d’histones épi-génétique transmissible qui orchestre et module dynamiquement certains événements impliquant la chromatine, tels l’activation et la désactivation de gènes ainsi que la duplication et la réparation d’ADN. Ces modifications sont impliquées subséquemment dans la signalisation et la progression de cancers, tels que la leucémie. En conséquence, l'élucidation des modifications d’histones est importante pour comprendre leurs fonctions biologiques. Une méthodologie analytique a été mise au point en laboratoire pour isoler, détecter, et quantifier les MPT d’histones en utilisant une approche rapide à deux volets à l’aide d’outils bioinformatiques spécialisés. La méthodologie développée en laboratoire a été validée en utilisant des histones de souche sauvage ainsi que deux types d’histones mutants déficients en enzymes acétyltransferase. Des trois sources d’histones utilisées, la seule MPT qui a démontré un changement significatif est l’acétylation de l’histone H3 à lysine 56 (H3K56ac). L’expression et la stoechiométrie de cette MPT, issue de cellules de souche sauvage et de cellules mutantes, ont été déterminées avec précision et comparées. Les fonctions de balayage polyvalentes d'un instrument à trappe ionique quadrupôle linéaire hybride ont été utilisées pour améliorer la détection de protéines intactes. Le mode de balayage « enhanced multiply charged » (EMC) a été modifié pour contenir et détecter les ions de protéines intactes situées dans la trappe ionique linéaire. Ce mode de balayage nommé « targeted EMC » (tEMC) a permis de quadrupler le niveau de sensibilité (signal/interférence), et quintupler la résolution du mode de balayage conventionnel. De plus, la capacité de séparation des charges du tEMC a réduit de façon significative les effets de « space charge » dans la trappe ionique linéaire. La résolution supérieure du mode tEMC a permis de différencier plusieurs isoformes modifiées, particulièrement pour l’histone H3. L’analyse des peptides d’histones trypsiques à l’aide du mode de balayage « MRM » a permis le séquençage et la quantification de MPT avec un haut degré de précision. La seule MPT qui était sous-exprimée entre l’histone de souche sauvage et le mutant DOT1L fut la méthylation de l’histone H3 lysine 79(H3K79me1). Les effets de deux inhibiteurs d’enzymes HDAC (HDACi) sur l’expression de MPT d’histone ont été évalués en utilisant la méthodologie analytique mentionnée. Les histones extraites de cellules normales et cancéreuses ont été exposées à du Vorinostat(SAHA) ou du Entinostat (MS-275) pour une période de 24 à 72 heures. Deux histones furent principalement affectées, soit H3 et H4. Étonnamment, les mêmes effets n'ont pas été détectés lorsque les cellules normales ont été traitées avec le HDACi pour une période de 48 à 72 heures. Une méthode absolue de quantification avec une courbe d’étalonnage a été développée pour le peptide H3K56ac. Contrairement à certaines publications, nos résultats démontrent que cette MPT est présente dans les cellules mammifères avec une stoechiométrie très basse (< 0,1%) et n'est pas surexprimée de façon significative après le traitement au HDACi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le régulateur transcriptionnel BAP1 est une déubiquitinase nucléaire (DUB) dont le substrat est l’histone H2A modifiée par monoubiquitination au niveau des residus lysines 118 et 119 (K118/K119). Depuis les dernières années, BAP1 emerge comme un gene suppresseur de tumeur majeur. En effet, BAP1 est inactivé dans un plethore de maladies humaines héréditaires et sporadiques. Cependant, malgré l’accumulation significative des connaissances concernant l’occurrence, la pénétrance et l’impact des défauts de BAP1 sur le développement de cancers, ses mécanismes d’action et de régulation restent très peu compris. Cette étude est dédiée à la caractérisation moléculaire et fonctionnelle du complexe multi-protéique de BAP1 et se présente parmi les premiers travaux décrivant sa régulation par des modifications post-traductionnelles. D’abord, nous avons défini la composition du corps du complexe BAP1 ainsi que ses principaux partenaires d’interaction. Ensuite, nous nous sommes spécifiquement intéressés a investiguer d’avantage deux principaux aspects de la régulation de BAP1. Nous avons d’abord décrit l’inter-régulation entre deux composantes majeures du complexe BAP1, soit HCF-1 et OGT. D’une manière très intéressante, nous avons trouvé que le cofacteur HCF-1 est un important régulateur des niveaux protéiques d’OGT. En retour, OGT est requise pour la maturation protéolytique de HCF-1 en promouvant sa protéolyse par O-GlcNAcylation, un processus de régulation très important pour le bon fonctionnement de HCF-1. D’autre part, nous avons découvert un mécanisme unique de régulation de BAP1 médiée par l’ubiquitine ligase atypique UBE2O. en effet, UBE2O se caractérise par le fait qu’il s’agit aussi bien d’une ubiquitine conjuratrice et d’une ubiquitine ligase. UBE2O, multi-monoubiquitine BAP1 au niveau de son domaine NLS et promeut son exclusion du noyau, le séquestrant ainsi dans le cytoplasme. De façon importante, nos travaux ont permis de mettre de l’emphase sur le rôle de l’activité auto-catalytique de chacune de ces enzymes, soit l’activité d’auto-déubiquitination de BAP1 qui est requise pour la maintenance de sa localisation nucléaire ainsi que l’activité d’auto-ubiquitination d’UBE2O impliquée dans son transport nucléo-cytoplasmique. De manière significative, nous avons trouvé que des défauts au niveau de l’auto-déubiquitination de BAP1 due à des mutations associées à certains cancers indiquent l’importance d’une propre regulation de cette déubiquitinase pour les processus associés à la suppression de tumeurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La méthylation de l'ADN est une marque épigénétique importante chez les mammifères. Malgré le fait que la méthylation de la cytosine en 5' (5mC) soit reconnue comme une modification épigénétique stable, il devient de plus en plus reconnu qu'elle soit un processus plus dynamique impliquant des voies de méthylation et de déméthylation actives. La dynamique de la méthylation de l'ADN est désormais bien caractérisée dans le développement et dans le fonctionnement cellulaire des mammifères. Très peu est cependant connu concernant les implications régulatrices dans les réponses immunitaires. Pour se faire, nous avons effectué des analyses du niveau de transcription des gènes ainsi que du profilage épigénétique de cellules dendritiques (DCs) humaines. Ceux-ci ont été faits avant et après infection par le pathogène Mycobacterium tuberculosis (MTB). Nos résultats fournissent le premier portrait génomique du remodelage épigénétique survenant dans les DCs en réponse à une infection bactérienne. Nous avons constaté que les changements dans la méthylation de l'ADN sont omniprésents, identifiant 3,926 régions différentiellement méthylées lors des infections par MTB (MTB-RDMs). Les MTB-RDMs montrent un chevauchement frappant avec les régions génomiques marquées par les histones associées avec des régions amplificatrices. De plus, nos analyses ont révélées que les MTB-RDMs sont activement liées par des facteurs de transcription associés à l'immunité avant même d'être infecté par MTB, suggérant ces domaines comme étant des éléments d'activation dans un état de dormance. Nos données suggèrent que les changements actifs dans la méthylation jouent un rôle essentiel pour contrôler la réponse cellulaire des DCs à l'infection bactérienne.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of vectors for the over-expression of tagged proteins in Dictyostelium were designed, constructed and tested. These vectors allow the addition of an N- or C-terminal tag (GFP, RFP, 3xFLAG, 3xHA, 6xMYC and TAP) with an optimized polylinker sequence and no additional amino acid residues at the N or C terminus. Different selectable markers (Blasticidin and gentamicin) are available as well as an extra chromosomal version; these allow copy number and thus expression level to be controlled, as well as allowing for more options with regard to complementation, co- and super-transformation. Finally, the vectors share standardized cloning sites, allowing a gene of interest to be easily transfered between the different versions of the vectors as experimental requirements evolve. The organisation and dynamics of the Dictyostelium nucleus during the cell cycle was investigated. The centromeric histone H3 (CenH3) variant serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. A number of Dictyostelium histone H3-domain containing proteins as GFP-tagged fusions were expressed and it was found that one of them functions as CenH3 in this species. Like CenH3 from some other species, Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins. The targeting domain, comprising α-helix 2 and loop 1 of the histone fold is required for targeting CenH3 to centromeres. Compared to the targeting domain of other known and putative CenH3 species, Dictyostelium CenH3 has a shorter loop 1 region. The localisation of a variety of histone modifications and histone modifying enzymes was examined. Using fluorescence in situ hybridisation (FISH) and CenH3 chromatin-immunoprecipitation (ChIP) it was shown that the six telocentric centromeres contain all of the DIRS-1 and most of the DDT-A and skipper transposons. During interphase the centromeres remain attached to the centrosome resulting in a single CenH3 cluster which also contains the putative histone H3K9 methyltransferase SuvA, H3K9me3 and HP1 (heterochromatin protein 1). Except for the centromere cluster and a number of small foci at the nuclear periphery opposite the centromeres, the rest of the nucleus is largely devoid of transposons and heterochromatin associated histone modifications. At least some of the small foci correspond to the distal telomeres, suggesting that the chromosomes are organised in a Rabl-like manner. It was found that in contrast to metazoans, loading of CenH3 onto Dictyostelium centromeres occurs in late G2 phase. Transformation of Dictyostelium with vectors carrying the G418 resistance cassette typically results in the vector integrating into the genome in one or a few tandem arrays of approximately a hundred copies. In contrast, plasmids containing a Blasticidin resistance cassette integrate as single or a few copies. The behaviour of transgenes in the nucleus was examined by FISH, and it was found that low copy transgenes show apparently random distribution within the nucleus, while transgenes with more than approximately 10 copies cluster at or immediately adjacent to the centromeres in interphase cells regardless of the actual integration site along the chromosome. During mitosis the transgenes show centromere-like behaviour, and ChIP experiments show that transgenes contain the heterochromatin marker H3K9me2 and the centromeric histone variant H3v1. This clustering, and centromere-like behaviour was not observed on extrachromosomal transgenes, nor on a line where the transgene had integrated into the extrachromosomal rDNA palindrome. This suggests that it is the repetitive nature of the transgenes that causes the centromere-like behaviour. A Dictyostelium homolog of DET1, a protein largely restricted to multicellular eukaryotes where it has a role in developmental regulation was identified. As in other species Dictyostelium DET1 is nuclear localised. In ChIP experiments DET1 was found to bind the promoters of a number of developmentally regulated loci. In contrast to other species where it is an essential protein, loss of DET1 is not lethal in Dictyostelium, although viability is greatly reduced. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed apparent cell type patterning with a bias towards pre-stalk cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations in specific genes in a limited number of cases. This review aims to provide an overview of the current knowledge of the epigenetic alterations in PeCa and the promising results in this field. The identification of epigenetically altered genes in PeCa is an important step in understanding the mechanisms involved in this unexplored disease. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Childhood neuroblastoma is the most common solid tumour of infancy and highly refractory to therapy. One of the most powerful prognostic indicators for this disease is the N-Myc gene amplification, which occurs in approximately 25% of all neuroblastomas. N-Myc is a member of transcription factors belonging to a subclass of the larger group of proteins sharing Basic-Region/Helix–Loop–Helix/Leucin-Zipper (BR/HLH/LZ) motif. N-Myc oncoproteins may determine activation or repression of several genes thanks to different protein-protein interactions that may modulate its transcriptional regulatory ability and therefore its potential for oncogenicity. Chromatin modifications, including histone methylation, have a crucial role in transcription de-regulation of many cancer-related genes. Here, it was investigated whether N-Myc can functionally and/or physically interact with two different factors involved in methyl histone modification: WDR5 (core member of the MLL/Set1 methyltransferase complex) and the de- methylase LSD1. Co-IP assays have demonstrated the presence of both N-Myc-WDR5 and N-Myc-LSD1 complexes in two neuroblastoma cell lines. Human N-Myc amplified cell lines were used as a model system to investigate on transcription activation and/or repression mechanisms carried out by N-Myc-LSD1 and N-Myc-WDR5 protein complexes. qRT-PCR and immunoblot assays underlined the ability of both complexes to positively (N-Myc-WDR5) and negatively (N-Myc-LSD1) influence transcriptional regulation of crititical neuroblastoma N-Myc-related genes, MDM2, p21 and Clusterin. Ch-IP experiments have revealed the binding of the N-Myc complexes above mentioned to the gene promoters analysed. Finally, pharmacological treatment pointed to abolish N-Myc and LSD1 activity were performed to test cellular alterations, such as cell viability and cell cycle progression. Overall, the results presented in this work suggest that N-Myc can interact with two distinct histone methyl modifiers to positively and negatively affect gene transcription in neuroblastoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin, composed of repeating nucleosome units, is the genetic polymer of life. To aid in DNA compaction and organized storage, the double helix wraps around a core complex of histone proteins to form the nucleosome, and is therefore no longer freely accessible to cellular proteins for the processes of transcription, replication and DNA repair. Over the course of evolution, DNA-based applications have developed routes to access DNA bound up in chromatin, and further, have actually utilized the chromatin structure to create another level of complexity and information storage. The histone molecules that DNA surrounds have free-floating tails that extend out of the nucleosome. These tails are post-translationally modified to create docking sites for the proteins involved in transcription, replication and repair, thus providing one prominent way that specific genomic sequences are accessed and manipulated. Adding another degree of information storage, histone tail-modifications paint the genome in precise manners to influence a state of transcriptional activity or repression, to generate euchromatin, containing gene-dense regions, or heterochromatin, containing repeat sequences and low-density gene regions. The work presented here is the study of histone tail modifications, how they are written and how they are read, divided into two projects. Both begin with protein microarray experiments where we discover the protein domains that can bind modified histone tails, and how multiple tail modifications can influence this binding. Project one then looks deeper into the enzymes that lay down the tail modifications. Specifically, we studied histone-tail arginine methylation by PRMT6. We found that methylation of a specific histone residue by PRMT6, arginine 2 of H3, can antagonize the binding of protein domains to the H3 tail and therefore affect transcription of genes regulated by the H3-tail binding proteins. Project two focuses on a protein we identified to bind modified histone tails, PHF20, and was an endeavor to discover the biological role of this protein. Thus, in total, we are looking at a complete process: (1) histone tail modification by an enzyme (here, PRMT6), (2) how this and other modifications are bound by conserved protein domains, and (3) by using PHF20 as an example, the functional outcome of binding through investigating the biological role of a chromatin reader. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vernalization, the acceleration of flowering by the prolonged cold of winter, ensures that plants flower in favorable spring conditions. During vernalization in Arabidopsis, cold temperatures repress FLOWERING LOCUS C (FLC) expression [1,2] in a mechanism involving VERNALIZATION INSENSITIVE 3 (VIN3) [3], and this repression is epigenetically maintained by a Polycomb-like chromatin regulation involving VERNALIZATION 2 (VRN2), a Su(z)12 homolog, VERNALIZATION 1 (VRN1), and LIKE-HETEROCHROMATIN PROTEIN 1 [4,5,6,7,8]. In order to further elaborate how cold repression triggers epigenetic silencing, we have targeted mutations that result in FLC misexpression both at the end of the prolonged cold and after subsequent development. This identified VERNALIZATION 5 (VRN5), a PHD finger protein and homolog of VIN3. Our results suggest that during the prolonged cold, VRN5 and VIN3 forma heterodimer necessary for establishing the vernalization-induced chromatin modifications, histone deacetylation, and H3 lysine 27 trimethylation required for the epigenetic silencing of FLC. Double mutant and FLC misexpression analyses reveal additional VRN5 functions, both FLC-dependent and -independent, and indicate a spatial complexity to FLC epigenetic silencing with VRN5 acting as a common component in multiple pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how genes affect behavior is critical to develop precise therapies for human behavioral disorders. The ability to investigate the relationship between genes and behavior has been greatly advanced over the last few decades due to progress in gene-targeting technology. Recently, the Tet gene family was discovered and implicated in epigenetic modification of DNA methylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). 5hmC and its catalysts, the TET proteins, are highly abundant in the postnatal brain but with unclear functions. To investigate their neural functions, we generated new lines of Tet1 and Tet3 mutant mice using a gene targeting approach. We designed both mutations to cause a frameshift by deleting the largest coding exon of Tet1 (Tet1Δe4) and the catalytic domain of Tet3 (Tet3Δe7-9). As Tet1 is also highly expressed in embryonic stem cells (ESCs), we generated Tet1 homozygous deleted ESCs through sequential targeting to compare the function of Tet1 in the brain to its role in ESCs. To test our hypothesis that TET proteins epigenetically regulate transcription of key neural genes important for normal brain function, we examined transcriptional and epigenetic differences in the Tet1Δe4 mouse brain. The oxytocin receptor (OXTR), a neural gene implicated in social behaviors, is suggested to be epigenetically regulated by an unknown mechanism. Interestingly, several human studies have found associations between OXTR DNA hypermethylation and a wide spectrum of behavioral traits and neuropsychiatric disorders including autism spectrum disorders. Here we report the first evidence for an epigenetic mechanism of Oxtr transcription as expression of Oxtr is reduced in the brains of Tet1Δe4-/- mice. Likewise, the CpG island overlapping the promoter of Oxtr is hypermethylated during early embryonic development and persists into adulthood. We also discovered altered histone modifications at the hypermethylated regions, indicating the loss of TET1 has broad effects on the chromatin structure at Oxtr. Unexpectedly, we discovered an array of novel mRNA isoforms of Oxtr that are selectively reduced in Tet1Δe4-/- mice. Additionally, Tet1Δe4-/- mice display increased agonistic behaviors and impaired maternal care and short-term memory. Our findings support a novel role for TET1 in regulating Oxtr expression by preventing DNA hypermethylation and implicate TET1 in social behaviors, offering novel insight into Oxtr epigenetic regulation and its role in neuropsychiatric disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AGC1 deficiency is a rare demyelinating disease caused by mutations in the SLC25A12 gene, which encodes for the mitochondrial glutamate-aspartate carrier 1 (AGC1/Alarar), highly expressed in the central nervous system. In neurons, impairment in AGC1 activity leads to reduction in N-acetyl-aspartate, the main lipid precursor for myelin synthesis (Profilo et al., 2017); in oligodendrocytes progenitors cells, AGC1 down regulation has been related to early arrest proliferation and premature differentiation (Petralla et al., 2019). Additionally, in vivo AGC1 deficiency models i.e., heterozygous mice for AGC1 knock-out and neurospheres from their subventricular zone, respectively, showed a global decrease in cells proliferation and a switch in neural stem cells (NSCs) commitment, with specific reduction in OPCs number and increase in neural and astrocytic pools (Petralla et al., 2019). Therefore, the present study aims to investigate the transcriptional and epigenetic regulation underlying the alterations observed in OPCs and NSCs biological mechanisms, in either AGC1 deficiency models of Oli-neu cells (murine immortalized oligodendrocytes precursors cells), partially silenced by a shRNA for SLC25A12 gene, and SVZ-derived neurospheres from AGC1+/- mice. Western blot and immunofluorescence analysis revealed significant variations in the expression of transcription factors involved in brain cells’ proliferation and differentiation, in association with altered histone post-translational modifications, as well as histone acetylases (HATs) and deacetylases (HDACs) activity/expression, suggesting an improper transcriptional and epigenetic regulation affecting both AGC1 deficiency in vitro models. Furthermore, given the large role of acetylation in controlling in specific time-windows OPC maturation (Hernandez and Casaccia; 2015), pharmacological HATs/HDACs inhibitions were performed, confirming the involvement of chromatin remodelling enzymes in the altered proliferation and early differentiation observed in the AGC1 deficiency models of siAGC1 Oli-neu cells and AGC1+/- mice-derived neurospheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.