Epigenetic role of N-Myc in Neuroblastoma
Contribuinte(s) |
Perini, Giovanni |
---|---|
Data(s) |
09/04/2015
|
Resumo |
Childhood neuroblastoma is the most common solid tumour of infancy and highly refractory to therapy. One of the most powerful prognostic indicators for this disease is the N-Myc gene amplification, which occurs in approximately 25% of all neuroblastomas. N-Myc is a member of transcription factors belonging to a subclass of the larger group of proteins sharing Basic-Region/Helix–Loop–Helix/Leucin-Zipper (BR/HLH/LZ) motif. N-Myc oncoproteins may determine activation or repression of several genes thanks to different protein-protein interactions that may modulate its transcriptional regulatory ability and therefore its potential for oncogenicity. Chromatin modifications, including histone methylation, have a crucial role in transcription de-regulation of many cancer-related genes. Here, it was investigated whether N-Myc can functionally and/or physically interact with two different factors involved in methyl histone modification: WDR5 (core member of the MLL/Set1 methyltransferase complex) and the de- methylase LSD1. Co-IP assays have demonstrated the presence of both N-Myc-WDR5 and N-Myc-LSD1 complexes in two neuroblastoma cell lines. Human N-Myc amplified cell lines were used as a model system to investigate on transcription activation and/or repression mechanisms carried out by N-Myc-LSD1 and N-Myc-WDR5 protein complexes. qRT-PCR and immunoblot assays underlined the ability of both complexes to positively (N-Myc-WDR5) and negatively (N-Myc-LSD1) influence transcriptional regulation of crititical neuroblastoma N-Myc-related genes, MDM2, p21 and Clusterin. Ch-IP experiments have revealed the binding of the N-Myc complexes above mentioned to the gene promoters analysed. Finally, pharmacological treatment pointed to abolish N-Myc and LSD1 activity were performed to test cellular alterations, such as cell viability and cell cycle progression. Overall, the results presented in this work suggest that N-Myc can interact with two distinct histone methyl modifiers to positively and negatively affect gene transcription in neuroblastoma. |
Formato |
application/pdf |
Identificador |
http://amsdottorato.unibo.it/7073/1/Milazzo_Giorgio_tesi.pdf urn:nbn:it:unibo-13854 Milazzo, Giorgio (2015) Epigenetic role of N-Myc in Neuroblastoma, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare e molecolare <http://amsdottorato.unibo.it/view/dottorati/DOT496/>, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/7073. |
Idioma(s) |
en |
Publicador |
Alma Mater Studiorum - Università di Bologna |
Relação |
http://amsdottorato.unibo.it/7073/ |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #BIO/18 Genetica |
Tipo |
Tesi di dottorato NonPeerReviewed |