970 resultados para Endophytic fungus
Resumo:
由于生长环境的特殊性,红树林及其内生真菌的代谢产物在化学类型和生物活性方面都具有多样性,因此对其代谢产物的研究引起了人们越来越多的关注。本论文以菌丝体生物量、代谢产物量等指标及薄层色谱分析、高效液相色谱分析、抗菌活性测试等筛选手段对来源于我国海南红树植物的九株内生真菌在四种不同液体培养基上的静置发酵产物进行了综合评价,并从中选择了来源于半红树植物黄槿(Hibiscus tiliaceus)的内生真菌G2——赤散囊菌(Eurotium rubrum)进行了30 L规模发酵(采用PDB培养基)和次生代谢产物的研究,对分离得到的部分化合物进行了初步的生物活性评价。此外,本论文还对海南真红树植物红海榄(Rhizophora stylosa Griff.)的化学成分进行了研究,并对分离得到的部分化合物进行了二苯代苦味酰自由基(DPPH)清除活性的评价。 采用常规的硅胶柱层析、Sephadex LH-20柱层析、反相硅胶柱层析、制备薄层层析(pTLC)、重结晶等分离手段,分离纯化得到单体化合物。综合运用现代波谱技术 (IR、UV、MS、1D-NMR 和 2D-NMR) 以及与标准品或文献比对鉴定单体化合物的结构。从G2菌丝体和发酵液的合并提取物中鉴定了45个化合物的结构,其中13个为新化合物,结构类型包括6个苯甲醛类化合物(ER1*~ER6*)、4个蒽醌类化合物(ER15*~ ER18*)和3个含吲哚的二酮哌嗪生物碱类化合物(ER27*~ER29*)。 对以上分离鉴定的部分单体化合物进行了DPPH自由基清除活性、拒食杀虫活性、抗细菌活性以及体外细胞毒活性的初步评价。新化合物ER15*和三个已知化合物ER20、ER39和ER40都表现很强的DPPH自由基清除活性。化合物ER15*还表现较好的拒食杀虫活性,而化合物ER5*和ER18*不但没有杀虫活性,反而能促进幼虫的生长。所测试的化合物只有ER15*和ER18*表现出微弱的抗金黄色葡萄球菌活性。所测试的化合物对A-549、HL-60和P-388细胞株均未表现出有意义的体外细胞毒活性。 从红海榄枝条的提取物中分离鉴定了29个化合物,其中2个为新化合物,包括1个三萜酯(RS1*)和1个黄烷醇类化合物(RS12*);另有1个三萜酯(RS5)和1个黄烷醇类化合物(RS11)作为新的天然产物被分离鉴定。 对从红海榄提取物乙酸乙酯相和正丁醇相分离得到的部分单体化合物进行了DPPH自由基清除活性的研究。黄烷醇类化合物RS16和RS17显示最强的活性。另外,实验结果说明黄烷醇类化合物的DPPH自由基清除活性与其分子中所含的羟基数目有一定关系,而且若芳香环上有多个邻位酚羟基,则该化合物的活性将增强。本论文实验结果为海南红海榄植物资源的利用提供了化学成分及抗氧化活性方面的科学依据。
Resumo:
Wydział Biologii
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonises the roots of a wide range of host plants. In many settings colonisation promotes host growth, increases yield and protects the host from fungal diseases. We evaluated the effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertiliser levels were considered. P. indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70% and 80% respectively. P. indica also increased above ground biomass, 1000 grain weight and total grain weight. P. indica reduced disease severity and increased yield in both high and low fertiliser levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. P. indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.
Resumo:
Botryosphaeran, a new exopolysaccharide from the endophytic fungus Botryosphaeria rhodina MAMB-05, and algal laminarin were hydrolyzed by partially-fractionated enzymes of the beta-glucanolytic complex from Trichoderma harzianum Rifai. beta-Glucanase fractions (F-I and F-II) separated by gel permeation chromatography presented different modes of attack on botryosphaeran and laminarin. Botryosphaeran was hydrolyzed to the extent of 66% (F-I) and 98% (F-II) within 30 min, and its main hydrolysis products were gluco-oligosaccharides of DP >= 4, with lesser amounts of glucose, di- and tri-saccharides. The action of enzyme fractions I and II on laminarin resulted in 15% conversion to glucose, while the percentage of saccharification was radically different (70% for F-I and 25% for F-II). The different product arrays within the polysaccharide hydrolysates can be explained by the difference in the enzymes' specificities within each enzyme fraction, and the molecular structures of the polysaccharides and their complexity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)