900 resultados para Elevação artificial de petróleo
Resumo:
El presente proyecto tiene como objeto identificar cuáles son los conceptos de salud, enfermedad, epidemiología y riesgo aplicables a las empresas del sector de extracción de petróleo y gas natural en Colombia. Dado, el bajo nivel de predicción de los análisis financieros tradicionales y su insuficiencia, en términos de inversión y toma de decisiones a largo plazo, además de no considerar variables como el riesgo y las expectativas de futuro, surge la necesidad de abordar diferentes perspectivas y modelos integradores. Esta apreciación es pertinente dentro del sector de extracción de petróleo y gas natural, debido a la creciente inversión extranjera que ha reportado, US$2.862 millones en el 2010, cifra mayor a diez veces su valor en el año 2003. Así pues, se podrían desarrollar modelos multi-dimensional, con base en los conceptos de salud financiera, epidemiológicos y estadísticos. El termino de salud y su adopción en el sector empresarial, resulta útil y mantiene una coherencia conceptual, evidenciando una presencia de diferentes subsistemas o factores interactuantes e interconectados. Es necesario mencionar también, que un modelo multidimensional (multi-stage) debe tener en cuenta el riesgo y el análisis epidemiológico ha demostrado ser útil al momento de determinarlo e integrarlo en el sistema junto a otros conceptos, como la razón de riesgo y riesgo relativo. Esto se analizará mediante un estudio teórico-conceptual, que complementa un estudio previo, para contribuir al proyecto de finanzas corporativas de la línea de investigación en Gerencia.
Resumo:
The petrochemical industry has as objective obtain, from crude oil, some products with a higher commercial value and a bigger industrial utility for energy purposes. These industrial processes are complex, commonly operating with large production volume and in restricted operation conditions. The operation control in optimized and stable conditions is important to keep obtained products quality and the industrial plant safety. Currently, industrial network has been attained evidence when there is a need to make the process control in a distributed way. The Foundation Fieldbus protocol for industrial network, for its interoperability feature and its user interface organized in simple configuration blocks, has great notoriety among industrial automation network group. This present work puts together some benefits brought by industrial network technology to petrochemical industrial processes inherent complexity. For this, a dynamic reconfiguration system for intelligent strategies (artificial neural networks, for example) based on the protocol user application layer is proposed which might allow different applications use in a particular process, without operators intervention and with necessary guarantees for the proper plant functioning
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
Produced water is characterized as one of the most common wastes generated during exploration and production of oil. This work aims to develop methodologies based on comparative statistical processes of hydrogeochemical analysis of production zones in order to minimize types of high-cost interventions to perform identification test fluids - TIF. For the study, 27 samples were collected from five different production zones were measured a total of 50 chemical species. After the chemical analysis was applied the statistical data, using the R Statistical Software, version 2.11.1. Statistical analysis was performed in three steps. In the first stage, the objective was to investigate the behavior of chemical species under study in each area of production through the descriptive graphical analysis. The second step was to identify a function that classify production zones from each sample, using discriminant analysis. In the training stage, the rate of correct classification function of discriminant analysis was 85.19%. The next stage of processing of the data used for Principal Component Analysis, by reducing the number of variables obtained from the linear combination of chemical species, try to improve the discriminant function obtained in the second stage and increase the discrimination power of the data, but the result was not satisfactory. In Profile Analysis curves were obtained for each production area, based on the characteristics of the chemical species present in each zone. With this study it was possible to develop a method using hydrochemistry and statistical analysis that can be used to distinguish the water produced in mature fields of oil, so that it is possible to identify the zone of production that is contributing to the excessive elevation of the water volume.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This master´s thesis presents a reliability study conducted among onshore oil fields in the Potiguar Basin (RN/CE) of Petrobras company, Brazil. The main study objective was to build a regression model to predict the risk of failures that impede production wells to function properly using the information of explanatory variables related to wells such as the elevation method, the amount of water produced in the well (BSW), the ratio gas-oil (RGO), the depth of the production bomb, the operational unit of the oil field, among others. The study was based on a retrospective sample of 603 oil columns from all that were functioning between 2000 and 2006. Statistical hypothesis tests under a Weibull regression model fitted to the failure data allowed the selection of some significant predictors in the set considered to explain the first failure time in the wells
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks
Resumo:
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Uso de antioxidantes para elevação da qualidade do sêmen criopreservado de búfalos (Bubalus bubalis)
Resumo:
O sêmen bubalino sofre com o processo de congelação que leva ao estresse oxidativo. O objetivo do trabalho foi desenvolver mecanismo de C de sêmen, com adição de substâncias antioxidantes, que permita reduzir a mortalidade espermática e as injúrias celulares, a fim de aumentar a potencial fertilidade do sêmen bubalino pós-descongelação. Foram utilizados 5 touros bubalinos da raça Murrah (4-8 anos). As coletas de sêmen foram realizadas pelo método de “vagina artificial. Os ejaculados foram aliquotados para congelação, configurando quatro tratamentos distintos: Grupo Controle - congelação com diluidor TESTRIS; Grupo Vitamina C - TES-TRIS associado à vitamina C (2,5 mM); Grupo Pentoxifilina - TES-TRIS com pentoxifilina (3,5 mM); e Grupo Vitamina C + Pentoxifilina - TES-TRIS com vitamina C (2,5 mM) e pentoxifilina (3,5 mM). Foram analisadas no sêmen in natura (Fase Pré-Congelação) o volume, pH, cor, aspecto, turbilhonamento, concentração do ejaculado, motilidade progressiva, vigor, integridade de membrana plasmática e morfologia espermática. Após os processos de congelação-descongelação (Fase Pós-Descongelação) e após o teste de termo-resistência (Fase Pós-TTR), as análises de motilidade, vigor, integridade de membrana plasmática e morfologia espermática foram realizadas. Os resultados foram analisados por ANOVA, Teste de Tukey e as correlações foram calculadas pelo teste de Pearson, com uso dos programas BioEstat 5.0 e SPSS 12. O nível de significância adotado foi de 5%. Houve diferença estatística significativa entre tratamentos para motilidade progressiva na Fase Pós- TTR (Controle: 15,1 ± 15,3%; Vitamina C: 25,6 ± 16,3%; Pentoxifilina: 23,3 ± 14,6 e Vitamina C + Pentoxifilina: 28,6 ± 16,2%; P<0,05). Para as demais características espermáticas, não houve diferença estatística significativa entre tratamentos (P>0,05). Dessa forma, , o uso do antioxidante vitamina C, isolado ou associado à pentoxifilina, no sêmen bubalino, pode aumentar sua potencial fertilidade e maximizar a disseminação de material genético superior.
Resumo:
Maximizar la producción de pozos de crudo pesado y extra pesado es el principal beneficio que se desea obtener de los sistemas de control que están corrientemente operativos en empresas de petróleo. Dada la naturaleza compleja y cambiante con el tiempo de los métodos existentes de levantamiento artificial para extracción de crudo, se dificulta el cumplimiento de las especificaciones pre establecidas para el procesamiento del crudo por parte de los lazos de control regulatorios. Tomando esto en cuenta, en éste trabajo se propone un sistema de supervisión inteligente que permite detectar cambios en las condiciones de operación del proceso productivo y realizar ajustes automáticos de sus consignas. Además, el sistema supervisor propuesto tiene la capacidad de detectar fallas en los sensores involucrados en los lazos de control, garantizando de esta manera una operación confiable del proceso. La propuesta fue probada en un pozo de petróleo real obteniéndose resultados que superaron las expectativas iniciales.