897 resultados para Effects and Usages
Resumo:
Bulk, polycrystalline MgB2 samples containing 2.5 wt.% multi-walled carbon nanotubes (CNTs) have been prepared by conventional solid state reaction at 800 °C. The effect of Mg precursor powders composed of two different particle sizes on the critical current density (Jc) of the as-sintered samples has been investigated. An enhancement of Jc at high field has been observed in MgB2 samples containing CNTs prepared with fine Mg powders, whereas the values of Jc in the sample prepared using the coarser Mg powders was slightly decreased. These results contrast significantly with measurements on pure, undoped, MgB2 samples prepared from the same Mg precursor powders. They suggest that carbon substitution into the MgB2 lattice, which accounts for increased flux pinning, and therefore Jc, is more effective in precursor Mg powders with a larger surface area. Rather surprisingly, the so-called fishtail effect, observed typically in MgB2 single crystals and in the (RE)BCO family of high temperature superconductors (HTSs), was observed in both sets of CNT-containing polycrystalline samples as a result of lattice defects associated with C substitution. Significantly, analytical fits to the data for each sample suggest that the same flux pinning mechanism accounts for the fishtail effect in polycrystalline MgB2 and (RE)BCO. © 2013 Elsevier B.V. All rights reserved.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The compatibilizing effects of the compatibilizer, ethylene-acrylic acid random copolymer (EAA), on linear low density polyethylene (LLDPE)/poly(ethylene oxide) (PEO) blends and the mechanism of compatibilization of the blends have been studied. Morphology and microstructures as characterized by SEM, DMA, DSC and IR show that EAA can act as an effective compatibilizer, and the mechanism of compatibilization is due to the compatibility of amorphous phases between EAA and LLDPE, and intermolecular interaction between the carboxylic groups in EAA. and the ethereal oxygens in PEG.
Resumo:
We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings
Resumo:
Sparks, S. & Self. S. et al., 2005: Super-eruptions: global effects and future threats. Report of a Geological Society of London Working Group (2nd (print) Edn.). Original (Web) edition available at www.geolsoc.org.uk/supereruptions.
Resumo:
Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.
Resumo:
The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.
Resumo:
info:eu-repo/semantics/published
Resumo:
The North Sea is one of the most biologically productive ecosystems in the world and supports important fisheries. Climate-induced changes occurred in the pelagic ecosystems of the North Sea during the 1980s. These changes, which have been observed from phytoplankton to fish and among permanent (holoplankton) and temporary (meroplankton) plankton species, have resulted in alterations in plankton community composition and seasonality. Until now, the effects of climate-driven changes on biological linkages between pelagic and benthic ecosystems have not been examined. The present study indicates that changes in benthic organisms could have a profound effect on the trophodynamics of the pelagos. We demonstrate this by analyses of a long-term time series of North Sea plankton and sea surface temperature data. We discover that pronounced changes in the North Sea meroplankton, mainly related to an increased abundance and spatial distribution of the larvae of a benthic echinoderm, Echinocardium cordatum, result primarily from a stepwise increase in sea temperature after 1987 that has caused warmer conditions to occur earlier in the year than previously. Key stages of reproduction in E. cordatum, gametogenesis and spawning, appear to be influenced by winter and spring sea temperature and their larval development is affected by the quantity and quality of their phytoplankton food. Our analyses suggest that a new thermal regime in the North Sea in winter and spring may have benefited reproduction and survival in this benthic species. As a result, E. cordatum may be altering the trophodynamics of the summer pelagic ecosystem through competition between its larvae and holozooplankton taxa.
Molecular And Cellular Indexes Of Pollutant Effects And Their Use In Environmental-Impact Assessment