949 resultados para Darbo Fixed Point Theorem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this paper is to obtain fixed point theorems for Kannan and Zamfirescu operators in the presence of cyclical contractive condition. A method for approximation of the fixed points is also provided, for which both a priori and a posteriori error estimates are given. Our results generalize, unify and extend several important fixed points theorems in literature. In order to illustrate the efficiency of our generalizations five significant examples are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 47H10, 54E15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 65K10, 49M07, 90C25, 90C48.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 47H10; Secondary: 54H25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that an integrable (in the sense of Arnold-Jost) Hamiltonian system gives rise to quasi-periodic motion with trajectories running on invariant tori. These tori foliate the whole phase space. If we perturb an integrable system, the Kolmogorow-Arnold-Moser (KAM) theorem states that, provided some non-degeneracy condition and that the perturbation is sufficiently small, most of the invariant tori carrying quasi-periodic motion persist, getting only slightly deformed. The measure of the persisting invariant tori is large together with the inverse of the size of the perturbation. In the first part of the thesis we shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non analytic perturbation (the latter will only be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which theperturbations are analytic approximations of the original one. We will finally show that the approximate solutions will converge to a differentiable solution of our original problem. In the second part we will use an RG scheme using continuous scales, so that instead of solving an iterative equation as in the classical RG KAM, we will end up solving a partial differential equation. This will allow us to reduce the complications of treating a sequence of iterative equations to the use of the Banach fixed point theorem in a suitable Banach space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop and analyze C(0) penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.

Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.

Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is divided in two parts. In the first part we develop the theory of discrete nonautonomous dynamical systems. In particular, we investigate skew-product dynamical system, periodicity, stability, center manifold, and bifurcation. In the second part we present some concrete models that are used in ecology/biology and economics. In addition to developing the mathematical theory of these models, we use simulations to construct graphs that illustrate and describe the dynamics of the models. One of the main contributions of this dissertation is the study of the stability of some concrete nonlinear maps using the center manifold theory. Moreover, the second contribution is the study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter space of the autonomous Ricker competition model. Since the dynamics of the Ricker competition model is similar to the logistic competition model, we believe that there exists a certain class of two-dimensional maps with which we can generalize our results. Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant and convex subset of the space, we present a proof of the existence of a positive periodic solution of the nonautonomous Ricker competition model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a solution to improve the performance of the first order Early Error Sensing (EES) Adaptive Time Delay Tanlock Loops (ATDTL) presented in (Al-Zaabi, Al-Qutayri e Al-Araji, 2005), regarding to frequency estimation and tracking time. The EES-ATDTL are phaselocked-loops (PLL) used to hardware implementations, due to their simple structure. Fixed-points theorems are used to determine conditions for rapid convergence of the estimation process and a estimative of the frecuency input is obtained with a Gaussian filter that improves the gain adaptation. The mathematical models are the presented by (Al-Araji, Al-Qutayri e Al-Zaabi, 2006). Simulations have been performed to evaluate the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = 0 , where 2 < α ≤ 3 and D 0 + α is the Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the solution is not treated. We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear). 2010 Mathematics Subject Classification: 34B15