949 resultados para DISULFIDE BOND


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several unsymmetrically substituted aromatic donor acceptor disulfides have been synthesized and analysed for their second order nonlinear optical properties. These molecules exhibit moderately high first hyperpolarizability (beta) with excellent transparency in the visible region. Most of the unsymmetrical disulfides have a cut-off wavelength below 420 nm. Calculations show that the molecules have an asymmetric charge distribution around the disulfide bond which is responsible for their high beta values. These results provide motivation for the design and synthesis of nonlinear optical chromophores with multiple disulfide bonds for large second order nonlinearity and excellent visible transparency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coenzyme Q (ubiquinone), a fully substituted benzoquinone with polyprenyl side chain, participates in many cellular redox activities. Paradoxically it was discovered only in 1957, albeit being ubiquitous. It required a person, F. L. Crane, a place, Enzyme Institute, Madison, USA, and a time when D. E. Green was directing vigorous research on mitochondria. Located at the transition of 2-electron flavoproteins and 1-electron cytochrome carriers, it facilitates electron transfer through the elegant Q-cycle in mitochondria to reduce O-2 to H2O, and to H2O2, now a significant signal-transducing agent, as a minor activity in shunt pathway (animals) and alternative oxidase (plants). The ability to form Q-radical by losing an electron and a proton was ingeniously used by Mitchell to explain the formation of the proton gradient, considered the core of energy transduction, and also in acidification in vacuoles. Known to be a mobile membrane constituent (microsomes, plasma membrane and Golgi apparatus), allowing it to reach multiple sites, coenzyme Q is expected to have other activities. Coenzyme Q protects circulating lipoproteins being a better lipid antioxidant than even vitamin E. Binding to proteins such as QPS, QPN, QPC and uncoupling protein in mitochondria, QA and QB in the reaction centre in R. sphaeroides, and disulfide bond-forming protein in E. coli (possibly also in Golgi), coenzyme Q acquires selective functions. A characteristic of orally dosed coenzyme Q is its exclusive absorption into the liver, but not the other tissues. This enrichment of Q is accompanied by significant decrease of blood pressure and of serum cholesterol. Inhibition of formation of mevalonate, the common precursor in the branched isoprene pathway, by the minor product, coenzyme Q, decreases the major product, cholesterol. Relaxation of contracted arterial smooth muscle by a side-chain truncated product of coenzyme Q explains its effect of decreasing blood pressure. Extensive clinical studies carried out on oral supplements of coenzyine Q, initially by K. Folkers and Y. Yamamura and followed many others, revealed a large number of beneficial effects, significantly in cardiovascular diseases. Such a variety of effects by this lipid quinone cannot depend on redox activity alone. The fat-soluble vitamins (A, D, E and K) that bear structural relationship with coenzyme Q are known to be active in their polar forms. A vignette of modified forms of coenzyme Q taking active role in its multiple effects is emerging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Meeting the world's growing energy demands while protecting our fragile environment is a challenging issue. Second generation biofuels are liquid fuels like long-chain alcohols produced from lignocellulosic biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases (Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mutations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures. Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellulases, demonstrating the utility of engineering individual cellulases to produce novel thermostable mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by proline substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhancing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium acetate. Several semi-rational protein engineering approaches – on the basis of consensus sequence analysis, proline stabilization, FoldX energy calculation, and high B-factors – were evaluated to further enhance the thermostability of Cel6A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel 28-amino acid peptide, termed bombinakinin-GAP, was purified and characterized from skin secretions of the toad Bombina maxima. Its primary structure was established as DMYEIKQYKTAHGRPPICAPGEQCPIWV-NH2, in which two cysteines form a disulfide bond. A FASTA search of SWISS-PROT databank detected a 32% sequence identity between the sequences of the peptide and a segment of rat cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular (i.c.v.) administration of the peptide induced a significant decrease in food intake in rats, suggesting that it played a role in the control of feeding by brain. Analysis of its cDNA structure revealed that this peptide is coexpressed with bombinakinin M, a bradykinin-related peptide from the same toad. Bombinakinin-GAP appears to be the first example of a novel class of bioactive peptides from amphibian skin, which may be implicated in feeding behavior. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphibian skin is a rich resource of bioactive peptides like proline-rich bombesin from frog Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises proline-rich bombesin and a novel peptide, designated as bombestatin, was isolated from a skin cDNA library of B. maxima. The predicted primary structure of the novel peptide is WEVLLNVALIRLELLSCRSSKDQDQKESCGMHSW, in which two cysteines form a disulfide bond. A BLAST search of databases did not detect sequences with significant similarity. Bombestatin possesses dose-dependent contractile activity on rat stomach strips. The differences between cDNAs encoding PR-bombesin plus bombestatin and PR-bombesin alone are due to fragment insertions located in 3'-coding region and 3'-untranslational region, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel potent trypsin inhibitor was purified and characterized from frog Bombina maxima skin. A full-length cDNA encoding the protein was obtained from a cDNA library constructed from the skin. Sequence analysis established that the protein actually comprises three conserved albumin domains. B. maxima serum albumin was subsequently purified, and its coding cDNA was further obtained by PCR-based cloning from the frog liver. Only two amino acid variations were found in the albumin sequences from the skin and the serum. However, the skin protein is distinct from the serum protein by binding of a haem b (0.95 mol/mol protein). Different from bovine serum albumin, B. maxima albumin potently inhibited trypsin. It bound tightly with trypsin in a 1: 1 molar ratio. The equilibrium dissociation constants (K-D) obtained for the skin and the serum proteins were 1.92 x 10(-9) M and 1.55 x 10(-9) M, respectively. B. maxima albumin formed a noncovalent complex with trypsin through an exposed loop formed by a disulfide bond (Cys(53)-Cys(62)), which comprises the scissile bond Arg(58)(P-1)-His(59)(P-1'). No inhibitory effects on thrombin, chymotrypsin, elastase, and subtilisin were observed under the assay conditions. Immunohistochemical study showed that B. maxima albumin is widely distributed around the membranes of epithelial layer cells and within the stratum spongiosum of dermis in the skin, suggesting that it plays important roles in skin physiological functions, such as water economy, metabolite exchange, and osmoregulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new metalloproteinase-disintegrin, named Jerdonitin, was purified from Trimeresurus jerdonii venom with a molecular weight of 36 kDa on SDS-PAGE. It dose-dependently inhibited ADP-induced human platelet aggregation with IC50 of 120 nM. cDNA cloning and sequencing revealed that Jerdonitin belonged to the class II of snake venom metalloproteinases (SVMPs) (P-II class). Different from other P-II class SVMPs, metalloproteinase and disintegrin domains of its natural protein were not separated, confirmed by internal peptide sequencing. Compared to other P-II class SVMPs, Jerdonitin has two additional cysteines (Cys219 and Cys238) located in the spacer domain and disintegrin domain, respectively. They probably form a disulfide bond and therefore the metalloproteinase and disintegrin domains cannot be separated by posttranslationally processing. In summary, comparison of the amino acid sequences of Jerdonitin with those of other P-II class SVMPs by sequence alignment and phylogenetic analysis, in conjunction with natural protein structure data, suggested that it was a new type of P-II class SVMPs. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemokine receptor CCR5 is the receptor for several chemokines and major coreceptor for R5 human immunodeficiency virus type-1 strains entry into cell. Three-dimensional models of CCR5 were built by using homology modeling approach and 1 ns molecular dynamics (MD) simulation, because studies of site-directed mutagenesis and chimeric receptors have indicated that the N-terminus (Nt) and extracellular loops (ECLs) of CCR5 are important for ligands binding and viral fusion and entry, special attention was focused on disulfide bond function, conformational flexibility, hydrogen bonding, electrostatic interactions, and solvent-accessible surface area of Nt and ECLs of this protein part. We found that the extracellular segments of CCR5 formed a well-packet globular domain with complex interactions occurred between them in a majority of time of MID simulation, but Nt region could protrude from this domain sometimes. The disulfide bond Cys20-Cys269 is essential in controlling specific orientation of Nt region and maintaining conformational integrity of extracellular domain. RMS comparison analysis between conformers revealed the ECL1 of CCR5 stays relative rigid, whereas the ECL2 and Nt are rather flexible. Solvent-accessible surface area calculations indicated that the charged residues within Nt and ECL2 are often exposed to solvent. Integrating these results with available experimental data, a two-step gp120-CCR5 binding mechanism was proposed. The dynamic interaction of CCR5 extracellular domain with gp120 was emphasized. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The determination of disulfide bonds becomes an important aspect of obtaining a comprehensive understanding of the chemical structure of a protein. Numerous experimental methods have been developed for the determination of disulfide bonds in proteins. Modern mass spectrometry has developed as an important tool for the analysis of disulfide bond patterns due to its advantages of being simple, rapid and sensitive. The dissociations of the disulfide bonds were detected during the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. These fragment ions were attributed to prompt fragmentation or “in-source decay” rather than “post-source decay”. For the double disulfide bonds, ions of plus sulfur and minus sulfur atoms corresponding to cleavages at different sites within the carbon-sulfur-sulfur-carbon disulfide bonds were also observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD83 is a transmembrane glycoprotein of the immunoglobulin (Ig) superfamily and a surface marker for fully matured dendritic cells (DCs) in humans and mice. In teleosts, DC-like cells and their molecular markers are largely unknown. In this report, we described the identification and expressional analysis of a CD83 homologue, SmCD83, from turbot Scophthalmus maximus. The open reading frame of SmCD83 is 639 bp, which is preceded by a S'-untranslated region (UTR) of 87 bp and followed by a 3'-UTR of 1111 bp. The SmCD83 gene is 4716 bp in length, which contains five exons and four introns. The deduced amino acid sequence of SmCD83 shares 40-50% overall identities with the CD83 of several fish species. Like typical CD83, SmCD83 possesses an Ig-like extracellular domain, a transmembrane domain, and a cytoplasmic domain. The conserved disulfide bond-forming cysteine residues and the N-linked glycosylation sites that are preserved in CD83 are also found in SmCD83. Expressional analysis showed that constitutive expression of SmCD83 was high in gill, blood, spleen, muscle, and kidney and low in heart and liver. Bacterial infection and poly(I:C) treatment enhanced SmCD83 expression in kidney in time-dependent manners. Likewise, bacterial challenge caused significant induction of SmCD83 expression in cultured macrophages. Vaccination of turbot with a bacterin and a purified recombinant subunit vaccine-induced significant SmCD83 expression during the first week following vaccination. These results demonstrate that SmCD83 expression correlates with microbial challenge and antigen stimulation, which suggests the possibility that there may exist in turbot DC-like antigen-presenting cells that express SmCD83 upon activation by antigen uptake. In addition, these results also suggest that SmCD83 may serve as a marker for activated macrophages in turbot. (C) 2010 Elsevier Ltd. All rights reserved.