933 resultados para Conventional cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increased incidence of cancer and a similarly increased number of surgeries for insertion of silicone breast implants, it is necessary to assess the effect of such material within the breast tissue, particularly in mammography, because of the reduction in the power of breast cancer diagnosis. In this work, we introduce a breast phantom with silicone implants in order to evaluate the influence of the implant on the visibility of the main mammographic findings: fibers, microcalcifications and tumor masses. In this proposed phantom, the breast tissue was simulated using gel paraffin. In the optical density of phantom mammograms with implants, a reduction in breast tissue visibility was seen corresponding to 23% when compared to a phantom without silicone implants. This poor visibility was due to the X-ray beam scattering on silicone material; this effect produced a loss of visibility in the areas adjacent to the implant. It is expected that the proposed phantom model may be used as a device for the establishment of a technical standard for these types of procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato is amongst the most consumed vegetables in the world, not only for its culinary versatility but also for its high nutritional value. In the last years, consumers have shown an increased concern regarding food origin and safety. The organic tomato production has been a promising alternative for the consumer offering a safer food in relation to environmental, social and nutritional aspects. This study assessed the chemical composition of tomato seeds produced in both conventional and organic systems by INAA. The results showed significant differences (P <= 0.05) in the mass fractions of Br, Cs, Eu, Fe, K, Mo, Na, Rb and Sm between both systems, indicating influence of the crop management adopted in the different tomato production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This work deals with the xylitol production by biotechnological routes emphasizing the purification process using crystallization. RESULTS: Xylitol volumetric productivity of 0.665 g L(-1) h(-1) and yield of 0.7024 g g(-1) were obtained after 92 h fermentation. The fermented broth (61.3 g L(-1) xylitol) was centrifuged, treated and concentrated obtain a syrup (745.3 g L(-1) xylitol) which was crystallized twice, xylitol crystals with 98.5-99.2% purity being obtained. CONCLUSION: The hypothetical distribution obtained permits the determination of modeling parameters, which make possible the estimation of crystal dominant size from different initial experimental conditions. (C) 2008 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-purity niobium powder can be produced via the hydrogenation and dehydrogenation processes The present work aimed at the effect of temperature and cooling rate conditions on the niobium hydrogenation process using hydrogen gas The hydrogen contents of the materials were evaluated by weight change and chemical analysis X ray diffraction (XRD) was performed to identify and determine the lattice parameters of the formed hydride phases No hydrogenation took place under isothermal conditions only during cooling of the materials Significant hydrogenation occurred in the 500 C and 700 C experiments leading to the formation of a beta NbH(x) single phase material (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositions of canola, soybean, corn, cottonseed and sunflower oils suggest that they exhibit substantially different propensity for oxidation following the order of Canola < corn < cottonseed < sunflower approximate to soybean. These data suggest that any of the vegetable oils evaluated could be blended with minimal impact on viscosity although compositional differences would surely affect oxidative stability. Cooling curve analysis showed that similar cooling profiles were obtained for different vegetable oils. Interestingly, no film boiling or transition nucleate boiling was observed with any of the vegetable oils and heat transfer occurs only by pure nucleate boiling and convection. High-temperature cooling properties of vegetable oils are considerable faster than those observed for petroleum oil-based quenchants. (C)2010 Journal of Mechanical Engineering. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five vegetable oils: canola, soybean, corn, cottonseed and sunflower oils were characterized with respect to their composition by gas chromatography and viscosity. The compositions of the vegetable oils suggest that they exhibit substantially different propensity for oxidation following the order of: canola < corn < cottonseed < sunflower approximate to soybean. Viscosities at 40 degrees C and 100 degrees C and the viscosity index (VI) values were determined for the vegetable oils and two petroleum oil quenchants: Microtemp 157 (a conventional slow oil) and Microtemp 153B (an accelerated or fast oil). The kinematic viscosities of the different vegetable and petroleum oils at 40 degrees C were similar. The VI values for the different vegetable oils were very close and varied between 209-220 and were all much higher than the VI values obtained for Microtemp 157 (96) and Microtemp 153B (121). These data indicate that the viscosity variations of these vegetable oils are substantially less sensitive to temperature variation than are the parafinic oil based Microtemp 157 and Microtemp 153B. Although these data suggest that any of the vegetable oils evaluated could be blended with minimal impact on viscosity, the oxidative stability would surely be substantially impacted. Cooling curve analysis was performed on these vegetable oils at 60 degrees C under non-agitated conditions. These results were compared with cooling curves obtained for Microtemp 157, a conventional, unaccelerated petroleum oil, and Microtemp 153B, an accelerated petroleum oil under the same conditions. The results showed that cooling profiles of the different vegetable oils were similar as expected from the VI values. However, no boiling was observed wit any of the vegetable oils and heat transfer occurs only by convection since there is no full-film boiling and nucleate boiling process as typically observed for petroleum oil quenchants, including those of this study. Therefore, high-temperature cooling is considerable faster for vegetable oils as a class. The cooling properties obtained suggest that vegetable oils would be especially suitable fur quenching low-hardenability steels such as carbon steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A round robin program zoos conducted to assess the ability of three different X-radiographic systems for imaging internal fatigue cracks in riveted lap joints of composite glass reinforced fiber/metal laminate. From an engineering perspective, conventional film radiography and direct radiography have produced the best results, identifying and characterizing in detail internal damage on metallic faying surfaces of fastened glass reinforced fiber/metal laminate joints. On the other hand, computed radiographic images presented large projected geometric distortions and feature shifts due to the angular incident radiation beam, disclosing only partial internal cracking patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti(6)Al(4)V thin films were grown by magnetron sputtering on a conventional austenitic stainless steel. Five deposition conditions varying both the deposition chamber pressure and the plasma power were studied. Highly textured thin films were obtained, their crystallite size (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.