123 resultados para Constantte dielétrica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of structures using frequency selective surfaces applied on patch antennas. The FDTD method is used to determine the time domain reflected fields. Applications of frequency selective surfaces and patch antennas cover a wide area of telecommunications, especially mobile communications, filters and WB antennas. scattering parameters are obteained from Fourier Transformer of transmited and reflected fields in time domain. The PML are used as absorbing boundary condition, allowing the determination of the fields with a small interference of reflections from discretized limit space. Rectangular patches are considered on dielectric layer and fed by microstrip line. Frequency selective surfaces with periodic and quasi-periodic structures are analyzed on both sides of antenna. A literature review of the use of frequency selective surfaces in patch antennas are also performed. Numerical results are also compared with measured results for return loss of analyzed structures. It is also presented suggestions of continuity to this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstrip antennas are subject matter in several research fields due to its numerous advantages. The discovery, at 1999, of a new class of materials called metamaterials - usually composed of metallic elements immersed in a dielectric medium, have attracted the attention of the scientific community, due to its electromagnetic properties, especially the ability to use in planar structures, such as microstrip, without interfering with their traditional geometry. The aim of this paper is to analyze the effects of one and bidimensional metamaterial substrates in microstrip antennas, with different configurations of resonance rings, SRR, in the dielectric layer. Fractal geometry is applied to these rings, in seeking to verify a multiband behavior and to reduce the resonance frequency of the antennas. The results are then given by commercial software Ansoft HFSS, used for precise analysis of the electromagnetic behavior of antennas by Finite Element Method (FEM). To reach it, this essay will first perform a literature study on fractal geometry and its generative process. This paper also presents an analysis of microstrip antennas, with emphasis on addressing different types of substrates as part of its electric and magnetic anisotropic behavior. It s performed too an approach on metamaterials and their unique properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an analysis of the annular ring microstrip antennas printed on uniaxial anisotropic substrates and with superstrate.The analysis uses the full-wave formulation by means of the Hertz vector potentials method, in the Hankel transform domain. The definition of the Hertz vector potentials and the application of the appropriate boundary conditions to the structure allow determining the dyadic Green functions, relating the current densities in the conducting patch to the transforms of the tangential electric field components. Galerkin s method is then used to obtain the matrix equation whose nontrivial solution gives the complex resonant frequency of the antenna. From the modeling, it is possible to obtain results for the resonant frequency, bandwidth and quality factor, as a function of several parameters of the antenna, for different configurations. We have considered annular ring microstrip antennas on a single dielectric layer, antennas with two anisotropic dielectric layers, and annular ring microstrip antennas on suspended substrates. Numerical results for the resonant frequency of the these structures printed on isotropic substrates are also presented and compared with those published by other authors, showing a good agreement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists on the theoretical and numerical analysis of some properties of circular microstrip patch antennas on isotropic and uniaxial anisotropic substrates. For this purpose, a full wave analysis is performed, using Hertz Vector Potentials method in the Hankel Transform domain. In the numerical analysis, the moment method is also used in order to determine some characteristics of the antenna, such as: resonant frequency and radiation pattern. The definition of Hertz potentials in the Hankel domain is used in association with Maxwell´s equations and the boundary conditions of the structures to obtain the Green´s functions, relating the components of the current density on the patch and the tangential electric field components. Then, the Galerkin method is used to generate a matrix equation whose nontrivial solution is the complex resonant frequency of the structure. In the analysis, a microstrip antenna with only one isotropic dielectric layer is initially considered. For this structure, the effect of using superconductor patches is also analyzed. An analysis of a circular microstrip antenna on an uniaxial anisotropic dielectric layer is performed, using the Hertz vector potentials oriented along the optical axis of the material, that is perpendicular to the microstrip ground plane. Afterwards, the circular microstrip antenna using two uniaxial anisotropic dielectric layers is investigated, considering the particular case in which the inferior layer is filled by air. In this study, numerical results for resonant frequency and radiation pattern for circular microstrip antennas on isotropic and uniaxial anisotropic substrates are presented and compared with measured and calculated results found in the literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of this work our concern was to investigate the thermal effects in organic crystals using the theory of the polarons. To analyse such effect, we used the Fröhlich s Hamiltonian, that describes the dynamics of the polarons, using a treatment based on the quantum mechanics, to elucidate the electron-phonon interaction. Many are the forms to analyzing the polaronic phenomenon. However, the measure of the dielectric function can supply important information about the small polarons hopping process. Besides, the dielectric function measures the answer to an applied external electric field, and it is an important tool for the understanding of the many-body effects in the normal state of a polaronic system. We calculate the dielectric function and its dependence on temperature using the Hartree-Fock decoupling method. The dieletric function s dependence on the temperature is depicted by through a 3D graph. We also analyzed the so called Arrhenius resistivity, as a functionof the temperature, which is an important tool to characterize the conductivity of an organic molecule. In the second part we analyzed two perovskita type crystalline oxides, namely the cadmium silicate triclinic (CdSiO3) and the calcium plumbate orthorhombic (CaPbO3), respectively. These materials are normally denominated ABO3 and they have been especially investigated for displaying ferroelectric, piezoelectric, dielectrics, semiconductors and superconductors properties. We found our results through ab initio method within the functional density theory (DFT) in the GGA-PBE and LDA-CAPZ approximations. After the geometry optimization for the two structure using the in two approximations, we found the structure parameters and compared them with the experimental data. We still determined further the angles of connection for the two analyzed cases. Soon after the convergence of the energy, we determined their band structures, fundamental information to characterize the nature of the material, as well as their dielectrics functions, optical absorption, partial density of states and effective masses of electrons and holes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo estudar a influência da adição de diversos aditivos tais como óxido de silício (SiO2), óxido de bismuto (BiO2), óxido de cério (CeO2) e óxido de lantânio (La2O3) nas propriedades elétricas e dielétricas do titanato de bário (BaTiO3) policristalino. As amostras de titanato de bário foram compactadas e sinterizadas no Laboratório de Tecnologia dos Pós, do Departamento de Física da Universidade Federal do Rio Grande do Norte. Foram realizadas medidas de resistividade elétrica e constante dielétrica em função da temperatura, bem como ensaios de difração de raios-X e análise microestrutural através da microscopia eletrônica de varredura. A análise dos resultados permitiu avaliar a influência dos aditivos nas propriedades elétricas e dielétricas, e propor a utilização de cerâmicas eletrônicas a base de titanato de bário com propriedades superiores as do material existente atualmente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A permissividade complexa de filmes de poli(eter-eter-cetona) (PEEK) foram investigados num grande intervalo de frequência. Não foram observados picos de relaxação no intervalo de frequência de 1,0 Hz a 10(5) Hz, mas no intervalo de baixa frequência (10-4 Hz) há uma evidência de pico, o qual também pode ser observado com medidas de corrente de despolarização termo-estimulada (TSDC). Este pico está relacionado com a transição vítrea do polímero. A energia de ativação relacionada a esta relaxação dipolar foi obtida e ovalor é Ea = 0,44 eV, que é similar à energia de ativação de muitos polímeros sintéticos. As cargas espaciais se mostraram importantes no mecanismo de condução como evidenciado nas medidas da corrente de despolarização.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents