993 resultados para Commutative Group Algebras
Resumo:
Let X be a connected, noetherian scheme and A{script} be a sheaf of Azumaya algebras on X, which is a locally free O{script}-module of rank a. We show that the kernel and cokernel of K(X) ? K(A{script}) are torsion groups with exponent a for some m and any i = 0, when X is regular or X is of dimension d with an ample sheaf (in this case m = d + 1). As a consequence, K(X, Z/m) ? K(A{script}, Z/m), for any m relatively prime to a. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Motivated by the description of the C*-algebra of the affine automorphism group N6,28 of the Siegel upper half-plane of degree 2 as an algebra of operator fields defined over the unitary dual View the MathML source of the group, we introduce a family of C*-algebras, which we call almost C0(K), and we show that the C*-algebra of the group N6,28 belongs to this class.
Resumo:
We consider in this paper the family of exponential Lie groups Gn,µ, whose Lie algebra is an extension of the Heisenberg Lie algebra by the reals and whose quotient group by the centre of the Heisenberg group is an ax + b-like group. The C*-algebras of the groups Gn,µ give new examples of almost C0(K)-C*-algebras.
Resumo:
We associate some graphs to a ring R and we investigate the interplay between the ring-theoretic properties of R and the graph-theoretic properties of the graphs associated to R. Let Z(R) be the set of zero-divisors of R. We define an undirected graph ᴦ(R) with nonzero zero-divisors as vertices and distinct vertices x and y are adjacent if xy=0 or yx=0. We investigate the Isomorphism Problem for zero-divisor graphs of group rings RG. Let Sk denote the sphere with k handles, where k is a non-negative integer, that is, Sk is an oriented surface of genus k. The genus of a graph is the minimal integer n such that the graph can be embedded in Sn. The annihilating-ideal graph of R is defined as the graph AG(R) with the set of ideals with nonzero annihilators as vertex such that two distinct vertices I and J are adjacent if IJ=(0). We characterize Artinian rings whose annihilating-ideal graphs have finite genus. Finally, we extend the definition of the annihilating-ideal graph to non-commutative rings.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Let A be a finite-dimensional Q-algebra and Gamma subset of A a Z-order. We classify those A with the property that Z(2) negated right arrow U(Gamma) and refer to this as the hyperbolic property. We apply this in case A = K S is a semigroup algebra, with K = Q or K = Q(root-d). A complete classification is given when KS is semi-simple and also when S is a non-semi-simple semigroup. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).
Resumo:
We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Gamma. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of gl(n) (or sl(n)) for all n. We show that any Gamma-torsion theory defined by the coheight of the prime ideals of Gamma is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in Spec Gamma have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Gamma. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of gl(n) beyond the classical category of weight or generalized weight modules. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.
Resumo:
In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Z-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.
Resumo:
In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta-Sidki groups. The Lie algebra L is generated by two derivations v(1) = partial derivative(1) + t(0)(p-1) (partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...))))), v(2) = partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...)))) of the truncated polynomial ring K[t(i), i is an element of N vertical bar t(j)(p) =0, i is an element of N] in countably many variables. The associative algebra A generated by v(1), v(2) is equipped with a natural Z circle plus Z-gradation. In this paper we show that for p, which is not representable as p = m(2) + m + 1, m is an element of Z, the algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras. L. Bartholdi [3] andYa. S. Krylyuk [15] proved that for p = m(2) + m + 1 the algebra A is not graded nil. However, we show that the second family of self-similar Lie algebras introduced in [24] and their associative hulls are always Z(p)-graded, graded nil, and are sums of two locally nilpotent subalgebras.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
A full characterization is given of ordinary and restricted enveloping algebras which are normal with respect to the principal involution.
Resumo:
A loop is said to be automorphic if its inner mappings are automorphisms. For a prime p, denote by A(p) the class of all 2-generated commutative automorphic loops Q possessing a central subloop Z congruent to Z(p) such that Q/Z congruent to Z(p) x Z(p). Upon describing the free 2-generated nilpotent class two commutative automorphic loop and the free 2-generated nilpotent class two commutative automorphic p-loop F-p in the variety of loops whose elements have order dividing p(2) and whose associators have order dividing p, we show that every loop of A(p) is a quotient of F-p by a central subloop of order p(3). The automorphism group of F-p induces an action of GL(2)(p) on the three-dimensional subspaces of Z(F-p) congruent to (Z(p))(4). The orbits of this action are in one-to-one correspondence with the isomorphism classes of loops from A(p). We describe the orbits, and hence we classify the loops of A(p) up to isomorphism. It is known that every commutative automorphic p-loop is nilpotent when p is odd, and that there is a unique commutative automorphic loop of order 8 with trivial center. Knowing A(p) up to isomorphism, we easily obtain a classification of commutative automorphic loops of order p(3). There are precisely seven commutative automorphic loops of order p(3) for every prime p, including the three abelian groups of order p(3).