635 resultados para Collaborative Learning Design
Resumo:
The purpose of this concise paper is to propose, with evidence gathered through a systematic evaluation of an academic development programme in the UK, that training in the use of new and emerging learning technologies should be holistically embedded in every learning and training opportunity in learning, teaching and assessment in higher education, and not only as stand-alone modules or one-off opportunities. The future of learning in higher education cannot afford to allow Universities to disregard that digital literacy is an expected professional skill for their entire staff.
Resumo:
It is presented a research on the application of a collaborative learning and authoring during all delivery phases of e-learning programmes or e-courses offered by educational institutions. The possibilities for modelling of an e-project as a specific management process based on planned, dynamically changing or accidentally arising sequences of learning activities, is discussed. New approaches for project-based and collaborative learning and authoring are presented. Special types of test questions are introduced which allow test generation and authoring based on learners’ answers accumulated in the frame of given e-course. Experiments are carried out in an e-learning environment, named BEST.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
The last couple of years there has been a lot of attention for MOOCs. More and more universities start offering MOOCs. Although the open dimension of MOOC indicates that it is open in every aspect, in most cases it is a course with a structure and a timeline within which learning activities are positioned. There is a contradiction there. The open aspect puts MOOCs more in the non-formal professional learning domain, while the course structure takes it into the formal, traditional education domain. Accordingly, there is no consensus yet on solid pedagogical approaches for MOOCs. Something similar can be said for learning analytics, another upcoming concept that is receiving a lot of attention. Given its nature, learning analytics offers a large potential to support learners in particular in MOOCs. Learning analytics should then be applied to assist the learners and teachers in understanding the learning process and could predict learning, provide opportunities for pro-active feedback, but should also results in interventions aimed at improving progress. This paper illustrates pedagogical and learning analytics approaches based on practices developed in formal online and distance teaching university education that have been fine-tuned for MOOCs and have been piloted in the context of the EU-funded MOOC projects ECO (Elearning, Communication, Open-Data: http://ecolearning.eu) and EMMA (European Multiple MOOC Aggregator: http://platform.europeanmoocs.eu).
Resumo:
Poster presentation for our paper Brouns, F., & Firssova, O. (2016, October).The role of learning design and learning analytics in MOOCs. Paper presented at 9th EDEN Research Workshop, Oldenburg, Germany.
Resumo:
This paper presents a customizable system used to develop a collaborative multi-user problem solving game. It addresses the increasing demand for appealing informal learning experiences in museum-like settings. The system facilitates remote collaboration by allowing groups of learners tocommunicate through a videoconferencing system and by allowing them to simultaneously interact through a shared multi-touch interactive surface. A user study with 20 user groups indicates that the game facilitates collaboration between local and remote groups of learners. The videoconference and multitouch surface acted as communication channels, attracted students’ interest, facilitated engagement, and promoted inter- and intra-group collaboration—favoring intra-group collaboration. Our findings suggest that augmentingvideoconferencing systems with a shared multitouch space offers newpossibilities and scenarios for remote collaborative environments and collaborative learning.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
Distance and blended collaborative learning settings are usually characterized by different social structures defined in terms of groups' number, dimension, and composition; these structures are variable and can change within the same activity. This variability poses additional complexity to instructional designers, when they are trying to develop successful experiences from existing designs. This complexity is greatly associated with the fact that learning designs do not render explicit how social structures influenced the decisions of the original designer, and thus whether the social structures of the new setting could preclude the effectiveness of the reused design. This article proposes the usage of new representations (social structure representations, SSRs) able to support unskilled designers in reusing existing learning designs, through the explicit characterization of the social structures and constraints embedded either by the original designers or the reusing teachers, according to well-known principles of good collaborative learning practice. The article also describes an evaluation process that involved university professors, as well as the main findings derived from it. This process supported the initial assumptions about the effectiveness of SSRs, with significant evidence from both qualitative and qualitative data.
Resumo:
When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.
Resumo:
Peer-reviewed
Resumo:
This paper aims to better understand the development of students’ learning processes when participating actively in a specific Computer Supported Collaborative Learning system called KnowCat. To this end, a longitudinal case study was designed, in which eighteen university students took part in a 12-month (two semesters) learning project. During this time period, the students followed an instructional process, using some elements of KnowCat (KnowCat key features) design to support and improve their interaction processes, especially peer learning processes. Our research involved both supervising the students’ collaborative learning processes throughout the learning project and focusing our analysis on the qualitative evolution of the students’ interaction processes and on the development of metacognitive learning processes. The results of the current research reveal that the instructional application of the CSCL-KnowCat system may favour and improve the development of the students’ metacognitive learning processes. Additionally, the implications of the design of computer supported collaborative learning networks and pedagogical issues are discussed in this paper.