213 resultados para Cariama cristata
Resumo:
The major objectives of Leg 133 were (1) to define the evolution of the carbonate platforms on the northeastern Australian margin, including their relationship to adjoining basins; and (2) to understand the effects of climate and sea level on their development in space and time (Davies, McKenzie, Palmer-Julson, et al., 1991, doi:10.2973/odp.proc.ir.133.1991). Sixteen sites were drilled, and more than 5.5 km of Neogene core was recovered during Leg 133. However, recovery of Paleogene sediments was unexpectedly poor (a total of a few meters), and the sediments were poorly dated because of strong diagenesis. On the other hand, Site 210 drilled in this region during Leg 21 yielded an expanded Paleogene section, which contains abundant calcareous microfossils. Biostratigraphic information for this section given in Burns, Andrews, et al. (1973, doi:10.2973/dsdp.proc.21.1973) was based primarily on shipboard results. Detailed calcareous nannofossil and planktonic foraminifer biostratigraphies have not been published. Here we provide a detailed documentation of the calcareous nannofossil distribution in the section, biostratigraphically date the section using the modern nannofossil zonation of Okada and Bukry (1980. doi:10.1016/0377-8398(80)90016-X), and construct an age-depth curve based on current knowledge of nannofossil magnetobiochronology. This should provide a useful Paleogene biostratigraphic reference in the northeastern Australian sea, as Site 210 has apparently yielded the most complete Paleogene record in the region. The detailed biostratigraphy should provide a better age constraint for the regional Eocene-Oligocene hiatus recognized previously (e.g., Jenkins and Srinivasan, 1986, doi:10.2973/dsdp.proc.90.113.1986) and should be useful for future studies on various aspects of Paleogene history of the northeastern Australian sea.
Resumo:
The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.
Resumo:
Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species) and Octocorallia (2 species). The phylum Echinodermata was the most diverse in species number (47 species), with asteroids (25 species) and ophiuroids (13 species) being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species). Multidimensional scaling ordination (MDS) separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the pres- ence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.
Resumo:
A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic whitesided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest Sum PCN concentrations were found in samples from the latest sampling period.
Resumo:
The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.
Resumo:
A high-resolution sedimentary sequence recovered from the Tagus prodelta has been studied with the objective to reconstruct multi-decadal to centennial-scale climate variability on the western Iberian Margin and to discuss the observations in a wider oceanographic and climatic context. Between ca. 100 BC and AD 400 the foraminiferal fauna and high abundance of Globorotalia inflata indicate advection of subtropical waters via the Azores Current and the winter-time warm Portugal Coastal Current. Between ca. AD 400 and 1350, encompassing the Medieval Climate Anomaly (MCA), enhanced upwelling is indicated by the planktonic foraminiferal fauna, in particular by the high abundance of upwelling indicator species Globigerina bulloides. Relatively light d18O values and high sea surface temperature (SST) (reconstructed from foraminiferal assemblages) point to upwelling of subtropical Eastern North Atlantic Central Water. Between ca. AD 1350 and 1750, i.e. most of the Little Ice Age, relatively heavy d18O values and low reconstructed SST, as well as high abundances of Neogloboquadrina incompta, indicate the advection of cold subpolar waters to the area and a southward deflection of the subpolar front in the North Atlantic, as well as changes in the mode of the North Atlantic Oscillation. In addition, the assemblage composition together with the other proxy data reveals less upwelling and stronger river input than during the MCA. Stronger Azores Current influence on the Iberian Margin and strong anthropogenic effect on the climate after AD 1750 is indicated by the foraminiferal fauna. The foraminiferal assemblage shows a significant change in surface water conditions at ca. AD 1900, including enhanced river runoff, a rapid increase in temperature and increased influence of the Azores Current. The Tagus record displays a high degree of similarity to other North Atlantic records, indicating that the site is influenced by atmospheric-oceanic processes operating throughout the North Atlantic, as well as by local changes.
Resumo:
Pluri-annual proxy records of marine sediment cores from the Tagus Prodelta off Lisbon, Portugal, have been generated to gain insight into the climatic and hydrographic changes in the area during the twentieth century. The study includes benthic and planktonic foraminiferal faunas and the stable isotopic composition of one benthic (Uvigerina celtica) and two planktonic (Globigerina bulloides and Globorotalia inflata) foraminiferal species. Sea bottom and surface water temperatures were estimated based on the d18O values of these species and compared with instrumental data. The foraminiferal fauna and the isotope-based temperature record indicate increasing temperatures throughout the last century. The immigration of a new species, Saidovina karreriana, to the area around 100 years ago indicates changes in the trophic conditions and water mass properties, which are probably at least partly due to anthropogenic pollution.