Antarctic shallow water benthos from three stations at Potter Cove, King George Island, West Antarctic Peninsula


Autoria(s): Pasotti, Francesca; Manini, Elena; Giovannelli, Donato; Wölfl, Anne-Cathrin; Monien, Donata; Verleyen, Elie; Braeckman, Ulrike; Vanreusel, Ann
Cobertura

MEDIAN LATITUDE: -62.227491 * MEDIAN LONGITUDE: -58.652049 * SOUTH-BOUND LATITUDE: -62.232360 * WEST-BOUND LONGITUDE: -58.667690 * NORTH-BOUND LATITUDE: -62.225720 * EAST-BOUND LONGITUDE: -58.642220 * DATE/TIME START: 2010-03-01T00:00:00 * DATE/TIME END: 2010-03-01T00:00:00

Data(s)

04/06/2013

Resumo

The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.

Formato

application/zip, 9 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.815196

doi:10.1594/PANGAEA.815196

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Pasotti, Francesca; Manini, Elena; Giovannelli, Donato; Wölfl, Anne-Cathrin; Monien, Donata; Verleyen, Elie; Braeckman, Ulrike; Vanreusel, Ann (2013): Antarctic shallow water benthos under glacier retreat forcing. submitted

Palavras-Chave #A. actinochilus; A. brevipes; A. coffeaeformis; A. copulata; A. marina; A. trissophyllus; A. trissophyllus biom; Acanthocephala; Achnanthes brevipes; Actinocyclus actinochilus; Agalophamus trissophyllus; Agalophamus trissophyllus, biomass; Amphipoda; Amphipoda, biomass; Amphipoda biom; Amphora coffeaeformis; Amphora copulata; Amphora marina; Aplacophora; Ascidiacea; Ash-free dry weight; Attinia; B. cristata; B. cristata biom; B. punctata; Barrukia cristata; Barrukia cristata, biomass; benthic; Biddulphia punctata; Biopolymeric carbon; Biopolymeric carbon, carbon equivalents; Bivalvia; BPC; BPC C equ; C. costata; C. fasciolata; C. oculus-iridis; C. schuttii; C. scutellum; Calanoida, copepodites; Calanoida c; Carbohydrates, carbon equivalents; Carbohydrates, total; Chaetoceros, resting spores; Chaetoceros rs; Chl a/sed; Chlorophyll a per unit sediment mass; Chloroplastic pigment equivalents; CHO C equ; CHO tot; Cirratulidae; Cirratulidae, biomass; Cirratulidae biom; Cladocera; Cocconeis costata; Cocconeis fasciolata; Cocconeis schuttii; Cocconeis scutellum; Cocconeis sp.; Copepoda, biomass as carbon; Copepoda C; Coscinodiscus oculus-iridis; Coscinodiscus sp.; Counting; Counting, diatoms; CPE; Cumacea; Cumacea, biomass as carbon; Cumacea, eggs; Cumacea C; Cumacea e; Cyclopoida, copepodites; Cyclopoida c; D. smitthi; Depth; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Depth bot; Depth top; Diastylis sp.; Diastylis sp., biomass; Diastylis sp. biom; Diatom benthic; Diatom plank; Diatoms, benthic; Diatoms, planktonic; Diatoms indet; Diatoms indeterminata; Diploneis smitthi; Eudorella sp.; Eudorella sp., biomass; Eudorella sp. biom; Event; F. curta; F. kerguelensis; F. marnierii; F. obliquecostata; F. ritscheri; F. sublinearis; Fallacia marnierii; Fragilaria sp.; Fragilariopsis curta; Fragilariopsis kerguelensis; Fragilariopsis obliquecostata; Fragilariopsis ritscheri; Fragilariopsis sp.; Fragilariopsis sublinearis; G. angulosa; Gastropoda; Gastropoda, biomass; Gastropoda biom; Gastrotricha; Genaxinus sp.; Genaxinus sp., biomass; Genaxinus sp. biom; Gnathostomulida; Grammatophora angulosa; Gyrosigma sp.; Halacaroidea; Harpacticoida, copepodites; Harpacticoida c; Holothuroidea; Hydrozoa; IMCOAST/IMCONet; Impact of climate induced glacier melt on marine coastal systems, Antarctica; including Cocconeis pinnata; benthic; including tychoplanktonic diatoms; Isopoda; Kinorhyncha; L. abbreviata; L. gracilis; Label; Licmophora abbreviata; Licmophora gracilis; Licmophora sp.; LIP C equ; Lipids, carbon equivalents; Lipids, total; Lipids tot; little; Loricifera; M. charcoti; M. charcoti biom; M. daytoni; M. daytoni biom; Malacobelemnon daytoni; Malacobelemnon daytoni, biomass; Maldanidae; Maldanidae, biomass; Maldanidae biom; Meiofauna, other; Meiof oth; Mysella charcoti; Mysella charcoti, biomass; N. cf. cancellata; N. cincta; N. directa; N. glaciei; N. imperfecta; N. perminuta; Nauplii; Navicula cf. cancellata; Navicula cincta; Navicula directa; Navicula glaciei; Navicula imperfecta; Navicula perminuta; Navicula spp.; Nematoda; Nematoda, biomass as carbon; Nematoda C; O. litigiosa; Odontella litigiosa; Oligochaeta; Oligochaeta, biomass; Oligochaeta biom; Opephora sp.; Opheliidae; Opheliidae, biomass; Opheliidae biom; Ophiuroidea; Orbinidae; Orbinidae, biomass; Orbinidae biom; Ostrac; Ostracoda; P. delognei; P. eudon; P. glacialis; P. kamtschaticum; P. polita; P. polita biom; P. quadratarea; Paraserolis polita; Paraserolis polita, biomass; Parlibellus delognei; PBM C; Phaeopigments per unit sediment mass; Pheop/sed; Pinnularia quadratarea; Pinnularia sp.; planktonic/sea ice; Pleurosigma eudon; Polychaeta; Polychaeta, larvae; Polychaeta, other; Polychaeta larv; Polychaeta oth; Polynoidae; Polynoidae, biomass; Polynoidae biom; Porosira glacialis; Priapulida; Priapulida, larvae; Priapulida larv; Priapulus sp.; Priapulus sp., biomass; Priapulus sp. biom; Procaryotic biomass as carbon; Proteins, carbon equivalents; Proteins, total; Proteins/Carbohydrate ratio; Pseudogomphonema kamtschaticum; Pseudotanais sp., biomas; Pseudotanais sp. biom; PTR/CHO; PTR C equ; Replicate; Rotifera; S. fragilis; S. leavis; Sample code/label; Sellaphora sp.; Sipunculida; Spionidae; Spionidae, biomass; Spionidae biom; sum Of Chlorophyll a and Phaeopigments; Synedropsis fragilis; Synedropsis leavis; T. antarctica; T. aspera; T. gracilis; T. lentiginosa; T. nitzschioides; T. tumida; Tanaidacea; Tantulocarida; Tardigrada; Terebellidae; Terebellidae, biomass; Terebellidae biom; Thalassionema nitzschioides; Thalassiosira gracilis; Thalassiosira lentiginosa; Thalassiosira sp.; Thalassiosira tumida; Thalassiothrix antarctica; Total procaryotic number; TPN; TPRT; Trachyneis aspera; Trachyneis sp.; Turbellaria; unknown/tychoplanktonic; Var. 1; benthic; Var. 1; planktonic/sea ice; Var. 1; unknown/tychoplanktonic; Vaunthompsonia sp.; Vaunthompsonia sp., biomass; Vauthompsia sp.; Vauthompsia sp. biom; Y. eightsi; Y. eightsi biom; Yoldia eightsi; Yoldia eightsi, biomass
Tipo

Dataset