857 resultados para CRITICAL EXPONENT


Relevância:

40.00% 40.00%

Publicador:

Resumo:

in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider the exterior Neumann problem involving a critical Sobolev exponent. We establish the existence of two solutions having a prescribed limit at infinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the critical impeller speed results for 6 L Denver and Wemco bench-scale flotation cells with findings from a study by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2007. Evaluation of solids suspension in a pilot-scale mechanical flotation cell: the critical impeller speed. Minerals Engineering 20,233-240; Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] conducted in a 125 L Batequip flotation cell. Understanding solids suspension has become increasingly important due to dramatic increases in flotation cell sizes. The critical impeller speed is commonly used to indicate the effectiveness of solids suspension. The minerals used in this study were apatite, quartz and hematite. The critical impeller speed was found to be strongly dependent on particle size, solids density and air flow rate, with solids concentration having a lesser influence. Liquid viscosity was found to have a negligible effect. The general Zwietering-type critical impeller speed correlation developed by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] was found to be applicable to all three flotation machines. The exponents for particle size, solids concentration and liquid viscosity were equivalent for all three cells. The exponent for solids density was found to be less significant than that obtained by the previous authors, and to be consistent with values reported in the general literature for stirred tanks. Finally, a new dimensionless critical impeller speed correlation is proposed where the particle size is divided by the impeller diameter. This modified equation generally predicts the experimental measurements well, with most predictions within 10% of the experimental. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the damage enhanced creep rupture of disordered materials by means of a fiber bundle model. Broken fibers undergo a slow stress relaxation modeled by a Maxwell element whose stress exponent m can vary in a broad range. Under global load sharing we show that due to the strength disorder of fibers, the lifetime ʧ of the bundle has sample-to-sample fluctuations characterized by a log-normal distribution independent of the type of disorder. We determine the Monkman-Grant relation of the model and establish a relation between the rupture life tʄ and the characteristic time tm of the intermediate creep regime of the bundle where the minimum strain rate is reached, making possible reliable estimates of ʧ from short term measurements. Approaching macroscopic failure, the deformation rate has a finite time power law singularity whose exponent is a decreasing function of m. On the microlevel the distribution of waiting times is found to have a power law behavior with m-dependent exponents different below and above the critical load of the bundle. Approaching the critical load from above, the cutoff value of the distributions has a power law divergence whose exponent coincides with the stress exponent of Maxwell elements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different microscopic models exhibiting self-organized criticality are studied numerically and analytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical exponent, and to check universality classes. We find that various models lead to the same exponent, but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain continuum equations with different sources of noise, which we call internal and external. Different correlations of the noise give rise to different critical behavior. A model for external noise is proposed that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase transition above d=4. Limitations of the approach of these models by a simple nonlinear equation are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that ∑k,ℓ=1N(nk,nℓ)2α(nknℓ)α≪N2−2α(logN)b(α) holds for arbitrary integers 1≤n1<⋯exponent b(α)b(α). This estimate complements recent results for 1/2≤α≤11/2≤α≤1 and shows that there is no “trace” of the functional equation for the Riemann zeta function in estimates for such GCD sums when 0<α<1/20<α<1/2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.