979 resultados para CONSTANT MEAN-CURVATURE
Resumo:
Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.
Resumo:
Purpose: To evaluate the correlation of the mean curvature and shape factors of both corneal surfaces for different corneal diameters measured with the Scheimpflug photography–based system in keratoconus eyes. Methods: A total of 61 keratoconus eyes of 61 subjects, aged 14 to 64 years, were included in this study. All eyes received a comprehensive ophthalmologic examination including anterior segment and corneal analysis with the Sirius system (CSO): anterior and posterior mean corneal radius for 3, 5, and 7 mm (aKM, pKM), anterior and posterior mean shape factor for 4.5 and 8 mm (ap, pp), central and minimal corneal thickness, and anterior chamber depth. Results: Mean aKM/pKM ratio around 1.20 (range, 0.95–1.48) was found for all corneal diameters (P = 0.24). Weak but significant correlations of this ratio with pachymetric parameters were found (r between −0.28 and −0.34, P < 0.04). The correlation coefficient between aKM and pKM was ≥0.92 for all corneal diameters. A strong and significant correlation was also found between ap and pp (r ≥ 0.86, P < 0.01). The multiple regression analysis revealed that central pKM was significantly correlated with aKM, central corneal thickness, anterior chamber depth, and spherical equivalent (R2 ≥ 0.88, P < 0.01) and that 8 mm pp was significantly correlated with 8 mm ap and age (R2 = 0.89, P < 0.01). Conclusions: Central posterior corneal curvature and shape factor in the keratoconus eye can be consistently predicted from the anterior corneal curvature and shape factor, respectively, in combination with other anatomical and ocular parameters.
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
We consider the solvability of the Neumann problem for the equation -Delta u + lambda u = 0, partial derivative u/partial derivative v = Q(x)vertical bar u vertical bar(q-2)u on partial derivative Omega, where Q is a positive and continuous coefficient on partial derivative Omega, lambda is a parameter and q = 2(N - 1)/(N - 2) is a critical Sobolev exponent for the trace embedding of H-1(Omega) into L-q(partial derivative Omega). We investigate the joint effect of the mean curvature of partial derivative Omega and the shape of the graph of Q on the existence of solutions. As a by product we establish a sharp Sobolev inequality for the trace embedding. In Section 6 we establish the existence of solutions when a parameter lambda interferes with the spectrum of -Delta with the Neumann boundary conditions. We apply a min-max principle based on the topological linking.
Resumo:
The radial growth of individual lobes of the foliose lichen, Parmelia conspersa (Ehrh. Ex Ach.) Ach. was studied to determine whether (1) adjacent lobes exchange carbohydrate and (2) marginal competition between lobes influences radial growth. In a survey of thalli of different size, the number of marginal lobes was linearly related to thallus circumference. However, the relationship between mean lobe width and thallus circumference was fitted by a second order polynomial. Hence, mean lobe width may reach a maximum in thalli approx. 3 cm in diameter. The interactions between marginal lobes were studied by either painting single lobes with acrylic paint or by removing lobes from the thallus. Painting the whole lobe virtually stopped its radial growth while partially painted lobes grew less than control lobes. The radial growth of a lobe was unaffected by either completely painting or removing its neighbour. Removal of both neighbouring lobes did not influence the radial growth of a lobe but severing the lobe from the thallus reduced its radial growth. In addition, lobe width increased significantly when both neighbouring lobes were removed. These results suggest that adjacent lobes have a considerable degree of independence and that there is little exchange of carbohydrate between them. In addition, marginal competition between adjacent lobes may restrict the lateral extension of the lobe and this may maintain a more constant mean lobe width in larger thalli. It is possible that the intensity of marginal competition between adjacent lobes may vary with thallus size and this could be a factor determining the growth curve of a foliose lichen throughout its life.
Resumo:
Noise-vocoded (NV) speech is often regarded as conveying phonetic information primarily through temporal-envelope cues rather than spectral cues. However, listeners may infer the formant frequencies in the vocal-tract output—a key source of phonetic detail—from across-band differences in amplitude when speech is processed through a small number of channels. The potential utility of this spectral information was assessed for NV speech created by filtering sentences into six frequency bands, and using the amplitude envelope of each band (=30 Hz) to modulate a matched noise-band carrier (N). Bands were paired, corresponding to F1 (˜N1 + N2), F2 (˜N3 + N4) and the higher formants (F3' ˜ N5 + N6), such that the frequency contour of each formant was implied by variations in relative amplitude between bands within the corresponding pair. Three-formant analogues (F0 = 150 Hz) of the NV stimuli were synthesized using frame-by-frame reconstruction of the frequency and amplitude of each formant. These analogues were less intelligible than the NV stimuli or analogues created using contours extracted from spectrograms of the original sentences, but more intelligible than when the frequency contours were replaced with constant (mean) values. Across-band comparisons of amplitude envelopes in NV speech can provide phonetically important information about the frequency contours of the underlying formants.
Resumo:
In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.
Resumo:
In this paper we present one of the first high-speed particle image velocimetry measurements to quantify flame-turbulence interaction in centrally-ignited constant-pressure premixed flames expanding in nearisotropic turbulence. Measurements of mean flow velocity and rms of fluctuating flow velocity are provided over a range of conditions both in the presence and absence of the flame. The distributions of stretch rate contributions from different terms such as tangential straining, normal straining and curvature are also provided. It is found that the normal straining displays non-Gaussian pdf tails whereas the tangential straining shows near Gaussian behavior. We have further tracked the motion of the edge points that reside and co-move with the edge of the flame kernel during its evolution in time, and found that within the measurement conditions, on average the persistence time scales of stretch due to pure curvature exceed that due to tangential straining by at least a factor of two. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.
Resumo:
Anaerobic efforts are commonly required through repeated sprint during efforts in many sports, making the anaerobic pathway a target of training. Nevertheless, to identify improvements on such energetic way it is necessary to assess anaerobic capacity or power, which is usually complex. For this purpose, authors have postulated the use of short running performances to anaerobic ability assessment. Thus, the aim of this study was to find a relationship between running performances on anaerobic power, anaerobic capacity or repeated sprint ability. Methods Thirteen military performed maximal running of 50 (P50), 100 (P100) and 300 (P300) m on track, beyond of running-based anaerobic sprint test (RAST; RSA and anaerobic power test), maximal anaerobic running test (MART; RSA and anaerobic capacity test) and the W′ from critical power model (anaerobic capacity test). Results By RAST variables, peak and average power (absolute and relative) and maximum velocity were significantly correlated with P50 (r = −0.68, p = 0.03 and −0.76, p = 0.01; −0.83, p < 0.01 and −0.83, p < 0.01; and −0.78, p < 0.01), respectively. The maximum intensity of MART was negatively and significantly correlated with P100 (r = −0.59) and W′ was not statistically correlated with any of the performances. Conclusion MART and W′ were not correlated with short running performances, having a weak performance predicting probably due to its longer duration in relation to assessed performances. Observing RAST outcomes, we postulated that such a protocol can be used during daily training as short running performance predictor.
Resumo:
We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.
Resumo:
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
Resumo:
Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data.
Resumo:
We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter = 9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 10(8). Under these conditions the convection is turbulent, and the time-averaged velocity at any point is `zero'. The Reynolds number based on the Taylor microscale, Re-lambda, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6-7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as (RaSc1/2)-Sc-1/2, and the Reynolds number would scale as (RaSc-1/2)-Sc-1/2. The velocity and the flux measurements appear to be consistent with the Ra-1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are Much higher compared to what would be obtained in Rayleigh-Benard (R-B) convection for similar density differences.
Resumo:
Measurements of the ratio of diffusion coefficient to mobility (D/ mu ) of electrons in SF6-N2 and CCl2F2-N2 mixtures over the range 80