917 resultados para Breakdowns Forecast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CJJP takes a look at the forecast of inmates population in the state of Iowa in a ten year period. Information was produced by Division of Criminal and Juvenile Justice Planning. This report was made possible partially through funding from the U.S. Department of Justice, Bureau of Justice Statistics and its program for State Statistical Analysis Centers. Points of view or opinions expressed in this report are those of the Division of Criminal and Juvenile Justice Planning (CJJP), and do not necessarily reflect official positions of the U.S. Department of Justice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mediterranean basin is a particularly vulnerable region to climate change, partly due to its quite unique character that results both from physiographic conditions and societal development. The region features indeed a near-closed sea surrounded by very urbanised littorals and mountains from which numerous rivers originate. This results in a lot of interactions and feedbacks between oceanic-atmospheric-hydrological processes that play a predominant role on climate and extreme events that frequently cause heavy dam- ages and human losses in the Mediterranean ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives : This study compares three methods to forecast the number of acute somatic hospital beds needed in a Swiss academic hospital over the period 2010-2030. Design : Information about inpatient stays is provided through a yearly mandatory reporting of Swiss hospitals, containing anonymized data. Forecast of the numbers of beds needed compares a basic scenario relying on population projections with two other methods in use in our country that integrate additional hypotheses on future trends in admission rates and length of stay (LOS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Budget forecasts have become increasingly important as a tool of fiscal management to influence expectations of bond markets and the public at large. The inherent difficulty in projecting macroeconomic variables – together with political bias – thwart the accuracy of budget forecasts. We improve accuracy by combining the forecasts of both private and public agencies for Italy over the period 1993-2012. A weighted combined forecast of the deficit/ ratio is superior to any single forecast. Deficits are hard to predict due to shifting economic conditions and political events. We test and compare predictive accuracy over time and although a weighted combined forecast is robust to breaks, there is no significant improvement over a simple RW model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the minimum conditions of wetness duration and mean temperature required for Fusarium head blight infection in wheat. The weather model developed by Zoldan (2008) was tested in field experiments for two wheat cultivars grown in 2005 (five sowing dates) and 2006 (six sowing dates) in 10 m² plots with three replicates. The disease was assessed according to head incidence (HI), spikelet incidence (SI), and the interaction between these two methods was called head blight severity (HBS). Starting at the beginning of anthesis, air temperature and head wetness duration were daily recorded with an automatic weather station. With the combination of these two factors, a weather favorability table was built for the disease occurrence. Starting on the day of flowering beginning (1 - 5% fully exserted anthers), the sum of daily values for infection favorability (SDVIF) was calculated by means of a computer program, according to Zoldan (2008) table. The initial symptoms of the disease were observed at 3.7% spikelet incidence, corresponding to 2.6 SVDFI. The infection occurs in wheat due to rainfall which results in spike wetting of > 61.4 h duration. Rainfall events forecast can help time fungicide application to control FHB. The name of this alert system is proposed as UPF-scab alert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a minimum storage capacity of grains as a condition for the maintenance of regulator physical stocks has been used as a strategic factor in the agribusiness expansion. However, in Brazil the storage infrastructure has not followed the growth of the agricultural sector. This fact is evident in the case of soybeans that currently represent 49% of grain production in the country, whose volume production has been increasing significantly over the years. This study aimed to predict the futureneeds of static storage capacity of soybeans from historical data to estimate the investment needed to install storage units in Brazil for the next five years. A statistic analysis of collected data allowed a forecast and identification of the number of storage units that should be installed to meet the storage needs of soybeans in the next five years. It was concluded that by 2015 the soybean storage capacity should be 87 million tons, and to store 49% of soybeans produced, 1,104 storage units should be installed at a cost of R$ 442 million.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report describes those factors of the future that are related to the growth and needs of Russia, China, and India and that may provide significant internationalisation potential for Uusimaa companies. The report examines the emerging trends and market-entry challenges for each country separately. Additionally, it evaluates the training needs of Uusimaa companies in terms of the current offerings available for education on topics related to Russia, China, and India. The report was created via the Delphi method: experts were interviewed, and both Trendwiki material and the latest literature were used to create a summary of experts’ views, statements, and reasons behind recent developments. This summary of views was sent back to the experts with the objective of reaching consensus synthesising the differing views or, at least, of providing argumentation for the various alternative lines of development. In addition to a number of outside experts and business leaders, all heads of Finpro’s Finland Trade Centers participated in the initial interviews. The summary was commented upon by all Finpro consultants and analysts for Russia, China, and India, with each focusing on his or her own area of expertise. The literature used consisted of reports, listed for each country, and an extensive selection of the most recent newspaper articles. The report was created in January-April 2010. On 22 April 2010 its results were reviewed at the final report presentation in cooperation with the Uusimaa ELY Centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive literature shows that analysts’ forecasts and recommendations are often biased. Thus, it is important for the financial market to be able to recognize this bias to be able to correctly valuate public companies. This thesis uses characteristic approach, which was introduced by So (2013, pp. 615-640), to forecast analysts’ forecast errors and tests if predictable forecast error is fully incorporated into share prices. Data is collected of listed Finnish companies. Thesis’ timeframe spans over ten years from 2004 to 2013 consisting of 788 firm-years. Although there is earlier evidence that the characteristic approach is able to predict analysts’ forecast errors, no support for this is found in the Finnish market. This thesis contributes to the current knowledge by showing that the characteristic approach does not work universally as such but requires development to work especially in the smaller markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand forecasting is one of the fundamental managerial tasks. Most companies do not know their future demands, so they have to make plans based on demand forecasts. The literature offers many methods and approaches for producing forecasts. Former literature points out that even though many forecasting methods and approaches are available, selecting a suitable approach and implementing and managing it is a complex cross-functional matter. However, it’s relatively rare that researches are focused on the differences in forecasting between consumer and industrial companies. The aim of this thesis is to investigate the potential of improving demand forecasting practices for B2B and B2C sectors in the global supply chains. Business to business (B2B) sector produces products for other manufacturing companies. On the other hand, consumer (B2C) sector provides goods for individual buyers. Usually industrial sector have a lower number of customers and closer relationships with them. The research questions of this thesis are: 1) What are the main differences and similarities in demand planning between B2B and B2C sectors? 2) How the forecast performance for industrial and consumer companies can be improved? The main methodological approach in this study is design science, where the main objective is to develop tentative solutions to real-life problems. The research data has been collected from a case company. Evaluation and improving in organizing demand forecasting can be found in three interlinked areas: 1) demand planning operational environment, 2) demand forecasting techniques, 3) demand information sharing scenarios. In this research current B2B and B2C demand practices are presented with further comparison between those two sectors. It was found that B2B and B2C sectors have significant differences in demand practices. This research partly filled the theoretical gap in understanding the difference in forecasting in consumer and industrial sectors. In all these areas, examples of managerial problems are described, and approaches for mitigating these problems are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatility has a central role in various theoretical and practical applications in financial markets. These include the applications related to portfolio theory, derivatives pricing and financial risk management. Both theoretical and practical applications require good estimates and forecasts for the asset return volatility. The goal of this study is to examine the forecast performance of one of the more recent volatility measures, model-free implied volatility. Model-free implied volatility is extracted from the prices in the option markets, and it aims to provide an unbiased estimate for the market’s expectation on the future level of volatility. Since it is extracted from the option prices, model-free implied volatility should contain all the relevant information that the market participants have. Moreover, model-free implied volatility requires less restrictive assumptions than the commonly used Black-Scholes implied volatility, which means that it should be less biased estimate for the market’s expectations. Therefore, it should also be a better forecast for the future volatility. The forecast performance of model-free implied volatility is evaluated by comparing it to the forecast performance of Black-Scholes implied volatility and GARCH(1,1) forecast. Weekly forecasts for six years period were calculated for the forecasted variable, German stock market index DAX. The data consisted of price observations for DAX index options. The forecast performance was measured using econometric methods, which aimed to capture the biasedness, accuracy and the information content of the forecasts. The results of the study suggest that the forecast performance of model-free implied volatility is superior to forecast performance of GARCH(1,1) forecast. However, the results also suggest that the forecast performance of model-free implied volatility is not as good as the forecast performance of Black-Scholes implied volatility, which is against the hypotheses based on theory. The results of this study are consistent with the majority of prior research on the subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year