993 resultados para BEAM EPITAXY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodical alignment of the InAs dots along the < 100 > and < 110 > directions was observed on an elastically relaxed InGaAs buffer layer grown at 500 and 450 degrees C, respectively, on the vicinal GaAs(001) substrate. Due to alignment along these directions, the InAs dots were arranged into a quasi-two-dimensional hexagonal lattice. Such a periodical arrangement of InAs dots may be explained in terms of modulation in strain as well as composition along [110] as observed by using cross-sectional transmission electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 1-mu m-thick undoped In0.53Ga0.47As with different substrate growth temperature (T-g) or different beam flux pressure (BFP) of As were grown on lattice-matched semi-insulating InP (001) substrates by molecular beam epitaxy (MBE). Van der Pauw Hall measurements were carried out for these In0.53Ga0.47As samples. The residual electron concentration decreased with increasing temperature from 77 to 140 K, but increased with increasing temperature from 140 to 300 K. Rapid thermal annealing (RTA) can reduce the residual electron concentration. The residual electron mobility increased with increasing temperature from 77 to 300 K. All these electrical properties are associated with As antisite defects. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sb-assisted GaInNAs/GaAs quantum wells (QWs) with high (42.5%) indium content were investigated systematically. Transmission electron microscopy, reflection high-energy electron diffraction and photoluminescence (PL) measurements reveal that Sb acts as a surfactant to suppress three-dimensional growth. The improvement in the 1.55 mu m range is much more apparent than that in the 1.3 mu m range.. which can be attributed to the difference in N composition. The PL intensity and the full-width at half maximum of the 1.55 mu m single-QW were comparable with that of the 1.3 Am QWs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of rapid thermal annealing on photoluminescence (PL) properties of InGaAs, InGaNAs, InGaAsSb, and InGaNAsSb quantum wells (QWs) grown by molecular-beam epitaxy was systematically investigated. Variations of PL intensity and full width at half maximum were recorded from the samples annealed at different conditions. The PL peak intensities of InGaAs and InGaNAs QWs initially increase and then decrease when the annealing temperature increased from 600 to 900 degrees C, but the drawing lines of InGaAsSb and InGaNAsSb take on an "M" shape. The enhancement of the PL intensity and the decrease of the full width at half maximum in our samples are likely due to the removal of defects and dislocations as well as the composition's homogenization. In the 800-900 degrees C high-temperature region, interdiffusion is likely the main factor influencing the PL intensity. In-N is easily formed during annealing which will prevent In out diffusion, so the largest blueshift was observed in InGaAsSb in the high-temperature region. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs was deposited by molecular beam epitaxy (MBE) on a GaAs substrate with an intentional temperature gradient from centre to edge. Two-dimensional (2D) to three-dimensional (3D) morphology evolution was found along the direction in which the substrate temperature was decreasing. Quantum dots (QDs) with density as low as similar to 8 x 10(6) cm(-2) were formed in some regions. We attribute the morphological evolution to the temperature-dependent desorption of deposited indium and the intermixing between deposited indium and gallium from the buffer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile-strained InAlAs layers have been grown by solid-source molecular beam epitaxy on as-grown Fe-doped semi-insulating (SI) InP substrates and undoped SI InP substrates obtained by annealing undoped conductive InP wafers (wafer-annealed InP). The effect of the two substrates on InAlAs epilayers and InAlAs/InP type II heterostructures has been studied by using a variety of characterization techniques. Our calculation data proved that the out-diffusion of Fe atoms in InP substrate may not take place due to their low diffusion, coefficient. Double-crystal X-ray diffraction measurements show that the lattice mismatch between the InAlAs layers and the two substrates is different, which is originated from their different Fe concentrations. Furthermore, photoluminescence results indicate that the type II heterostructure grown on the wafer-annealed InP substrate exhibits better optical and interface properties than that grown on the as-grown Fe-doped substrate. We have also given a physically coherent explanation on the basis of these investigations. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.3 mum emitting InAs/GaAs quantum dots (QDs) have been grown by molecular beam epitaxy and QD light emitting diodes (LEDs) have been fabricated. In the electroluminescence spectra of QD LEDs, two clear peaks corresponding to the ground state emission and the excited state emission are observed. It was found that the ground state emission could be achieved by increasing the number of QDs contained in the active region because of the state filling effect. This work demonstrates a way to control and tune the emitting wavelength of QD LEDs and lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic hydrogen assisted molecular beam epitaxy (MBE) is a novel type of epitaxial growth of nanostructures. The GaAs (311)A surface naturally forms one-dimensional step arrays by step bunching along the direction of (-233) and the space period is around 40nm. The step arrays extend over several mum without displacement. The InGaAs quantum wire arrays are grown on the step arrays as the basis. Our results may prompt further development of more uniform quantum wire and quantum dot arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth interruption (GI) effect on GaSb quantum dot formation grown on GaAs by molecular beam epitaxy was investigated. The structure characterization was performed by reflection high-energy electron diffraction (RHEED), along with photoluminescence measurements. It is found that the GI can significantly change the surface morphology of GaSb QDs. During the GI, the QDs structures can be smoothed out and turned into a 2D-like structure. The time duration of the GI required for the 3D/2D transition depends on the growth time of the GaSb layer. It increases with the increase of the growth time. Our results are explained by a combined effect of the stress relaxation process and surface exchange reactions during the GI. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of the characteristics of undoped GaN films, grown on either vicinal or nominal flat SiC (0001) substrates by molecular beam epitaxy, has been carried out using photoluminescence and Raman scattering techniques. The I I K photoluminescence spectra of the GaN film grown on the vicinal SiC (0001) substrate show a strong and sharp near-bandgap peak (full width at half maximum (FWHM) similar to 16 meV). This feature contrasts with that of the GaN film grown on the nominal flat SiC (0001) substrate where the I I K photoluminescence spectra exhibit the near-bandgap peak (FWHM similar to 25 meV) and the intensity is approximately seven times weaker than that of the vicinal film sample. The redshift of the near-bandgap peak associated with excitons bound to shallow donors is related to the stress caused by both the lattice mismatch and the thermal expansion coefficient difference between GaN and SiC substrates. The measured thermal activation energy of the shallow donor of 33.4 meV is determined by using an Arrhenius plot of the near-bandgap luminescence versus I IT from the slope of the graph at high temperature. The temperature dependence of the FWHM of the near-bandgap luminescence has also been studied. The Raman scattering measurements from the vicinal film reveal that the E-2 phonon peak is strengthened and the A(1)(LO) phonon peak is shifted towards the low-frequency side with enhanced intensity, in comparison to that from the nominal flat film, suggesting a reduction in the density of defects and a lower free carrier concentration in the vicinal GaN film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.