980 resultados para Asymptotic stability
Resumo:
In this thesis, it is developed the robustness and stability analysis of a variable structure model reference adaptive controller considering the presence of disturbances and unmodeled dynamics. The controller is applied to uncertain, monovariable, linear time-invariant plants with relative degree one, and its development is based on the indirect adaptive control. In the direct approach, well known in the literature, the switching laws are designed for the controller parameters. In the indirect one, they are designed for the plant parameters and, thus, the selection of the relays upper bounds becomes more intuitive, whereas they are related to physical parameters, which present uncertainties that can be known easier, such as resistances, capacitances, inertia moments and friction coefficients. Two versions for the controller algorithm with the stability analysis are presented. The global asymptotic stability with respect to a compact set is guaranteed for both cases. Simulation results under adverse operation conditions in order to verify the theoretical results and to show the performance and robustness of the proposed controller are showed. Moreover, for practical purposes, some simplifications on the original algorithm are developed
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
This work deals with the nonlinear piezoelectric coupling in vibration-based energy harvesting, done by A. Triplett and D.D. Quinn in J. of Intelligent Material Syst. and Structures (2009). In that paper the first order nonlinear fundamental equation has a three dimensional state variable. Introducing both observable and control variables in such a way the controlled system became a SISO system, we can obtain as a corollary that for a particular choice of the observable variable it is possible to present an explicit functional relation between this variable one, and the variable representing the charge harvested. After-by observing that the structure in the Input-Output decomposition essentially changes depending on the relative degree changes, presenting bifurcation branches in its zero dynamics-we are able in to identify this type of bifurcation indicating its close relation with the Hartman - Grobman theorem telling about decomposition into stable and the unstable manifolds for hyperbolic points.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
A new procedure is given for the study of stability and asymptotic stability of the null solution of the non autonomous discrete equations by the method of dichotomic maps, which it includes Liapunov's Method asa special case. Examples are given to illustrate the application of the method.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
Moun-transfer reactions from muonic hydrogen to carbon and oxygen nuclei employing a full quantum-mechanical few-body description of rearrangement scattering were studied by solving the Faddeev-Hahn-type equations using close-coupling approximation. The application of a close-coupling-type ansatz led to satisfactory results for direct muon-transfer reactions from muonic hydrogen to C6+ and O8+.
Resumo:
In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)