841 resultados para AIDED SHEET STEELS
Resumo:
Plasma-aided nanofabrication is a rapidly expanding area of research spanning disciplines ranging from physics and chemistry of plasmas and gas discharges to solid state physics, materials science, surface science, nanoscience and nanotechnology and related engineering subjects. The current status of the research field is discussed and examples of superior performance and competitive advantage of plasma processes and techniques are given. These examples are selected to represent a range of applications of two major types of plasmas suitable for nanoscale synthesis and processing, namely thermally non-equilibrium and thermal plasmas. Major concepts and terminology used in the field are introduced. The paper also pinpoints the major challenges facing plasma-aided nanofabrication and identifies some emerging topics for future research. © 2007 IOP Publishing Ltd.
Resumo:
This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.
Resumo:
The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.
Resumo:
In this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling technique in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling methodology in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.
Resumo:
Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 oC, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress-strain curves and associated mechanical properties (yield stress, Young’s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 oC. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.
Resumo:
This fact sheet outlines aspects of the nonprofit sector in Australia, under the following headings: size; economic contribution; employment; volunteering; income; expenses; and philanthropy; and provides international comparisons on aspects including size, growth, economic contribution, giving, and workforce.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.
Resumo:
We present a method for calculating odome- try in three-dimensions for car-like ground ve- hicles with an Ackerman-like steering model. In our approach we use the information from a single camera to derive the odometry in the plane and fuse it with roll and pitch informa- tion derived from an on-board IMU to extend to three-dimensions, thus providing odometric altitude as well as traditional x and y transla- tion. We have mounted the odometry module on a standard Toyota Prado SUV and present results from a car-park environment as well as from an off-road track.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.