962 resultados para single electron transfer (SET)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans un contexte où l’énergie représente un enjeu majeur pour les pays et organisations à économies émergentes et développées, la recherche de nouvelles sources renouvelables et la démocratisation des vecteurs énergétiques permettant l’approvisionnement mondial de façon durable constitue un devoir pour la communauté scientifique internationale. D’ailleurs, il serait essentiel que les nombreuses disciplines de la chimie concertent leurs efforts. Plus particulièrement, la croissance de la recherche en chimie de coordination orientée vers la photosynthèse artificielle ainsi que le développement de matériaux fonctionnels démontre l’importance indéniable de ce champ de recherche. Ce travail présente dans un premier temps l’étude des différentes voies de synthèse d’hydroxyamidines, un ligand chélatant aux propriétés de coordination prometteuses ne recevant que très peu d’attention de la part de la communauté scientifique. Dans un deuxième temps, nous présenterons le développement d’une stratégie d’assemblage de leurs complexes supramoléculaires impliquant des métaux de transition abondants et peu dispendieux de la première rangée. Dans un troisième temps, il sera question de l’investigation de leurs propriétés photophysiques et électrochimiques à des fins d’applications au sein de matériaux fonctionnels. Pour ce faire, les différentes voies de synthèse des hydroxyamidines et de leurs amidines correspondantes qui ont précédemment été étudiées par les membres du groupe seront tout d’abord perfectionnées, puis investiguées afin de déterminer leur versatilité. Ensuite, les propriétés de complexation des amox résultantes comportant des motifs sélectionnés seront déterminées pour enfin étudier les propriétés photophysiques et électrochimiques d’une série de complexes de métaux de transition de la première rangée. En somme, plusieurs designs qu’offrent les amox et bis-amox sont étudiés et les propriétés des architectures résultantes de leur auto-assemblage sont déterminées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may lead to a new generation of implantable, wireless, minimally invasive medical devices, such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are among the most intuitive candidates for in vivo micropower. In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite element techniques has been developed on the effect of 1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics. In the second part of this thesis, in order to investigate the performance of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. COMSOL Multiphysics software has also been applied to analyze mass transport for different orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position (HP) and vertical position (VP) have been analyzed. The third part of this thesis has been focused on experimental work towards high performance EBFC. This work has integrated graphene/enzyme onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced enzyme loading and facilitate direct electron transfer. The developed 3D graphene/enzyme network based EBFC generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC generated twice the maximum power density of rGO based EBFC. Through a comparison of experimental and theoretical results, the cell performance efficiency is noted to be 67%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equivalent orbital (EO) method is investigated and used for predicting outer and inner ionization potentials of the linear alkanes. The calculated ionization potentials are in good agreement with those observed in photoelectron spectra provided that a set of 12 parameters is used in the theory. An optimization technique is used to find the best values for thle parameters and a single transferable parameter set can be found which is applicable to all the n-alkanes. A good fit to the experimental results can only be obtained if the uppermost molecular orbital of the n-alkanes is an antisymmetrical orbital built up from CH equivalent orbitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented herein covers a broad range of research topics and so, in the interest of clarity, has been presented in a portfolio format. Accordingly, each chapter consists of its own introductory material prior to presentation of the key results garnered, this is then proceeded by a short discussion on their significance. In the first chapter, a methodology to facilitate the resolution and qualitative assessment of very large inorganic polyoxometalates was designed and implemented employing ion-mobility mass spectrometry. Furthermore, the potential of this technique for ‘mapping’ the conformational space occupied by this class of materials was demonstrated. These claims are then substantiated by the development of a tuneable, polyoxometalate-based calibration protocol that provided the necessary platform for quantitative assessments of similarly large, but unknown, polyoxometalate species. In addition, whilst addressing a major limitation of travelling wave ion mobility, this result also highlighted the potential of this technique for solution-phase cluster discovery. The second chapter reports on the application of a biophotovoltaic electrochemical cell for characterising the electrogenic activity inherent to a number of mutant Synechocystis strains. The intention was to determine the key components in the photosynthetic electron transport chain responsible for extracellular electron transfer. This would help to address the significant lack of mechanistic understanding in this field. Finally, in the third chapter, the design and fabrication of a low-cost, highly modular, continuous cell culture system is presented. To demonstrate the advantages and suitability of this platform for experimental evolution investigations, an exploration into the photophysiological response to gradual iron limitation, in both the ancestral wild type and a randomly generated mutant library population, was undertaken. Furthermore, coupling random mutagenesis to continuous culture in this way is shown to constitute a novel source of genetic variation that is open to further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present transport measurements on a system of two lateral quantum dots in a perpendicular magnetic field. Due to edge channel formation in an open conducting region, the quantum dots are chirally coupled. When both quantum dots are tuned into the Kondo regime simultaneously, we observe a change in the temperature dependence of the differential conductance. This is explained by the RKKY exchange interaction between the two dots. As a function of bias the differential conductance shows a splitting of the Kondo resonance which changes in the presence of RKKY interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans un contexte où l’énergie représente un enjeu majeur pour les pays et organisations à économies émergentes et développées, la recherche de nouvelles sources renouvelables et la démocratisation des vecteurs énergétiques permettant l’approvisionnement mondial de façon durable constitue un devoir pour la communauté scientifique internationale. D’ailleurs, il serait essentiel que les nombreuses disciplines de la chimie concertent leurs efforts. Plus particulièrement, la croissance de la recherche en chimie de coordination orientée vers la photosynthèse artificielle ainsi que le développement de matériaux fonctionnels démontre l’importance indéniable de ce champ de recherche. Ce travail présente dans un premier temps l’étude des différentes voies de synthèse d’hydroxyamidines, un ligand chélatant aux propriétés de coordination prometteuses ne recevant que très peu d’attention de la part de la communauté scientifique. Dans un deuxième temps, nous présenterons le développement d’une stratégie d’assemblage de leurs complexes supramoléculaires impliquant des métaux de transition abondants et peu dispendieux de la première rangée. Dans un troisième temps, il sera question de l’investigation de leurs propriétés photophysiques et électrochimiques à des fins d’applications au sein de matériaux fonctionnels. Pour ce faire, les différentes voies de synthèse des hydroxyamidines et de leurs amidines correspondantes qui ont précédemment été étudiées par les membres du groupe seront tout d’abord perfectionnées, puis investiguées afin de déterminer leur versatilité. Ensuite, les propriétés de complexation des amox résultantes comportant des motifs sélectionnés seront déterminées pour enfin étudier les propriétés photophysiques et électrochimiques d’une série de complexes de métaux de transition de la première rangée. En somme, plusieurs designs qu’offrent les amox et bis-amox sont étudiés et les propriétés des architectures résultantes de leur auto-assemblage sont déterminées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work outlined in this dissertation will allow biochemists and cellular biologists to characterize polyubiquitin chains involved in their cellular environment by following a facile mass spectrometric based workflow. The characterization of polyubiquitin chains has been of interest since their discovery in 1984. The profound effects of ubiquitination on the movement and processing of cellular proteins depend exclusively on the structures of mono and polyubiquitin modifications anchored or unanchored on the protein within the cellular environment. However, structure-function studies have been hindered by the difficulty in identifying complex chain structures due to limited instrument capabilities of the past. Genetic mutations or reiterative immunoprecipitations have been used previously to characterize the polyubiquitin chains, but their tedium makes it difficult to study a broad ubiquitinome. Top-down and middle-out mass spectral based proteomic studies have been reported for polyubiquitin and have had success in characterizing parts of the chain, but no method to date has been successful at differentiating all theoretical ubiquitin chain isomers (ubiquitin chain lengths from dimer to tetramer alone have 1340 possible isomers). The workflow presented here can identify chain length, topology and linkages present using a chromatographic-time-scale compatible, LC-MS/MS based workflow. To accomplish this feat, the strategy had to exploit the most recent advances in top-down mass spectrometry. This included the most advanced electron transfer dissociation (ETD) activation and sensitivity for large masses from the orbitrap Fusion Lumos. The spectral interpretation had to be done manually with the aid of a graphical interface to assign mass shifts because of a lack of software capable to interpret fragmentation across isopeptide linkages. However, the method outlined can be applied to any mass spectral based system granted it results in extensive fragmentation across the polyubiquitin chain; making this method adaptable to future advances in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of a carbon paste electrode modified (CPEM) with N,N′-ethylenebis(salicylideneiminato)oxovanadium(IV) complex ([(VO)-O-IV(Salen)]) was investigated as a new sensor for cysteine. Cyclic voltammetry at the modified electrode in 0.1 mol L-1 KCl Solution (pH 5.0) showed a single-electron reduction/oxidation of the Couple VO3+/VO2+. The CPEM with [VO(Salen)] presented good electrochemical stability in a wide pH range (4.0-10.0) and an ability to electrooxidate cysteine at 0.65 V versus SCE. These results demonstrate the viability of the use of this modified electrode as an amperometric sensor for cysteine determination. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalene and biphenyl dianions are interesting compounds that can be obtained by double reduction of the corresponding arenes in solution with certain alkali metals. These dianions are highly reactive and rather elusive species with very high laying and highly delocalized electrons. They share many aspects of the reactivity of the alkali metal they originated from and consequently behave primarily as strong electron transfer (ET) reagents. We report here kinetic evidence for a different type of reactivity in their alkylation reactions with alkyl fluorides. By using cyclopropylmethyl fluoride (c-C3H5CH2F) as a very fast radical probe, we were able to settle that this alkylation does not involve the classical electron transfer reaction followed by radical coupling between diffusing radicals, but supports the alternative SN2 concerted mechanism, discerning thus this mechanistic SN2-ET dichotomy.