998 resultados para simultaneous graphite furnace atomic absorption spectrometry
Resumo:
This article describes the combination of low- and high-pressure flow systems for the determination of Magnesium, Calcium and Strontium by flame atomic absorption spectrometry (FAAS). In the low-pressure system a short C-18 RP column (length 0,5 cm) was utilized for the preconcentration/matrix separation step, xylenol orange was used as chelating agent and tetrabutylamonium acetate for ion pair formation. The hydraulic high pressure nebulization (HHPN) was used for sample transport and sample introduction in the high pressure system. The repeatabilities and detection limits for Mg, Ca and Sr were determined and compared with those obtained by pneumatic nebulization (PN). The results show that the detection limits obtained using the HHPN for Mg, Ca and Sr are between 1.5 to 2 times better than those obtained by PN when the signal transient was measured in area. The system presented a sampling frequency of 130 h-1 for direct determination of Mg, Ca or Sr in samples of saturated sodium chloride used in the production of chlorine and sodium hydroxide.
Resumo:
This review presents an updated overview of the trace element speciation by gas chromatography coupled with atomic absorption spectrometry.
Resumo:
It was evaluated the applicability of Langmuir, Freundlich and Temkin models to copper adsorption in three classes of soils. Fractions of each soil were added to test tubes containing growing concentrations of the metal in solution. The tubes were shaken and the copper concentrations were determined in the extracts by atomic absorption spectrometry (AAS). The models offered a good fit for the experimental data indicating that presence of silicated clay had high influence on copper sorption. The Langmuir isotherm showed high influence of the organic matter in the absorption phenomenon. It was evidenced the importance of further studies related to Temkin model.
Resumo:
This paper describes a sequential injection analysis (SIA) set-up coupled to a flame atomic absorption spectrometer (FAAS) to accomplish the determination of low concentrations of copper in drinking waters. Copper is first retained under neutral media in an on-line 29x1.6 mm column filled with poly(ethylenimine) immobilised on silica gel. The retained analyte is then eluted by flowing through the column 250 mL of a nitric acid solution. The selection of 3.85 ml of sample enabled to obtain a detection limit of 0.27 mug/L and a sampling rate of about 24 samples/h. There was a good agrement between the results of 12 samples furnished by the proposed procedure and by electrothermal atomic absorption spectrometry. Repeatability assessment gave a relative standard deviation of 1.3 % after ten replicate analysis of a sample containing about 70 mug/L in copper..
Resumo:
In order to demonstrate the feasibility of slurry sampling for environmental studies, different methodologies were developed for Cu and Zn in antarctic limpets and Ni in river sediment with FAAS detection. Studies focusing particle size, acid concentration, slurry stability, selectivity, among others were carried out in order to define the better conditions for slurry analysis. A study related to the depth profile for Ni in the Atibaia River sediment was made after optimization conditions for this element. For accuracy check, certified reference material was used as well as decomposition with microwave oven.
Resumo:
In this review it is presented some aspects of electrothermal atomic absorption spectrometry with tungsten coil (ETAW-AAS) since its beginning until the present days as well as the perspectives for this technique. Some aspects concerning its development and theoretical concepts are discussed. The analytical figures of merit such as limit of detection (LD), characteristic mass (m0), relative standard deviation (RSD), accuracy and precision are evaluated, compared and discussed considering published works. It is also evaluated its advantages, applications, limitations and instrumental development. The use of diode laser as radiation source and its perspectives to ETAW are also discussed.
Resumo:
A method for determination of lead and cadmium in aqueous samples using solvent microextraction and dithizone as complexing agent with FAAS was developed. Solvent microextraction parameters were optimized. The effect of foreign ions on the extraction yields was studied. The extraction was carried out until the aqueous to organic phase ratio achieved a 250 fold preconcentration of metals. For preconcentration times of 4 min the 3sigma detection limits, relative standard deviations (n=7) and linear calibration ranges were 1.6 mug L-1, 5.8% and 10.0 -- 80.0 mug L-1 for lead and 11.1 ng L-1, 5.9% and 0.3 -- 3.0 mug L-1 for cadmium, respectively. The solvent microextraction procedure presented here was applied to the determination of lead and cadmium in natural waters.
Resumo:
Nickel nanoparticles supported on amorphous silica ceramic matrix were synthesized by the polymeric precursor method. The nanostructure was characterized by NMR, BET, XRD, SEM, TEM, and flame atomic absorption spectrometry techniques. It was observed a dependence of the crystallite size on the thermal annealing, under a N2 atmosphere. The materials presented a high catalytic activity and selectivity upon the beta-pinene hydrogenation reaction. The magnetic hystereses were also correlated with the morphology of the processed material.
Resumo:
This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry and the future of this compensation strategy are critically discussed.
Resumo:
The toxicity of the major As species present in the environment justifies the effort for quantifying the element in environmental organic samples, which can vary from animal and vegetal tissues to coal and industrial residues. This paper comments about the applicability of the O2 bomb digestion, as a general procedure for all environmental organic materials. A rapid and straightforward method is suggested, which consists in burning the sample in the bomb at high O2 pressure, dissolving the vapours in diluted HNO3 and determining As in the resulting solution by atomic absorption spectrometry with electrothermal atomization. The method was applied to certified materials and plant samples.
Resumo:
Some commercial samples of vermicompost from bovine manure (humus) were characterized by thermogravimetry with respect to humidity, organic matter and ash contents, the percentages of which range from 6.55 to 5.35%, 53.01 to 69.96% and 46.44 to 66,14%, respectively. The capacity of adsorption of Cu2+, Zn2+ and Co2+ ions by these samples has been evaluated as a function of pH and time. The contents of several metal ions in the original vermicompost samples have been determined by flame atomic absorption spectrometry after digestion in a microwave oven. The high nitrogen content suggests that the earthworms used in the maturation procedure lead to an efficient degradation of organic matter. The metal retention was affected by both pH and adsorption time. The results also show that adsorption follows the order Cu2+ > Zn2+ > Co2+.
Resumo:
Heavy-metal concentration in sediment is an important parameter for identifying pollution sources and assessing pollution levels in aquatic ecosystems. In this context, the present study aimed at determining concentrations of heavy metals in sediments from the Vitória estuarine system, Brazil. Twenty nine stations were surveyed to assess the spatial distribution of heavy metals. The metals for silt-clay fractions (<63 µm) were analyzed through atomic absorption spectrometry. A discriminant analysis segregated the stations in four groups representing four areas within the estuarine system. The Espírito Santo Bay showed the lowest metal concentrations, while the Vitória harbor canal showed the highest. We concluded that concentrations of heavy metals reflect natural conditions and the contribution of human activities from sewage and industrial effluents. It was not possible to directly associate metal concentrations to specific pollution sources.
Resumo:
Samples of copper compounds covering all of the XXth century and the end of the XIXth century were submitted to classical and instrumental quantitative analysis. The amount of impurities greatly decreased with time, reaching a constant level since the 1960's. The gravimetric method was suitable for the determination of copper although other procedures also gave good or reasonable results. However, for metal contaminants, atomic absorption spectrometry was the best choice because of its lower detection limits, being able to determine several elements in the oldest samples. Ion chromatography detected several anions in copper salts manufactured before the 1950's. An increasing quality of raw materials and a better sensitivity of analytical methods led to quality improvement of copper compounds with time.
Resumo:
In this study, the preparation of the xerogel anilinepropylsilica is reported. The ability of the xerogel for extracting Al(III), Cr(III) and Fe(III) from ethanol was investigated at 25 ºC. The xerogel adsorption capacities were obtained from the adsorption isotherms by using the batch method. Flame atomic absorption spectrometry (FAAS) was used to estimate the concentration of metal ions in solution. The adsorption affinity follows the series Cr(III) > Fe(III) > Al(III) and the maximum adsorption capacities of the metal ions were 0.61, 0.52 and 0.43 mmol g-1, respectively.
Determinação de arsênio em águas contaminadas usando fluorescência de raios-X por energia dispersiva
Resumo:
This work proposes a simple, fast and inexpensive method to determine As in natural waters, using X-ray fluorescence. 50 µL of each sample containing 100 mg L-1 of yttrium as internal standard were deposited over a 2.5 µm thickness MylarTM film. The samples were dried at 50 °C for 2 h. X-ray spectra were obtained using an EDXRF apparatus. The accuracy was determined by analyte addition/recovery and by comparison with Hydride Generation Atomic Absorption Spectrometry (HG AAS). A recovery of about 100% was obtained and the results were in good agreement with HG AAS. The method showed a relative standard deviation of 6.8% and a detection limit of 10.5 µg L-1 of As.