689 resultados para problem based learning (PBL)
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
This dissertation includes two studies. Study 1 is a qualitative case study that describes enactment of the main components of a high fidelity Full-Day Early Learning Kindergarten (FDELK) classroom, specifically play-based learning and teacher-ECE collaboration. Study 2 is a quantitative analysis that investigates how effectively the FDELK program promotes school readiness skills, namely self-regulation, literacy, and numeracy, in Kindergarteners. To describe the main components of an FDELK classroom in Study 1, a sub-sample of four high fidelity case study schools were selected from a larger case study sample. Interview data from these schools’ administrators, educators, parents, and community stakeholders were used to describe how the main components of the FDELK program enabled educators to meet the individual needs of students and promote students’ SR development. In Study 2, hierarchical regression analyses of 32,207 students’ self-regulation, literacy, and numeracy outcomes using 2012 Ontario Early Development Instrument (EDI) data revealed essentially no benefit for students participating in the FDELK program when compared to peers in Half-Day or Alternate-Day Kindergarten programs. Being older and female predicted more positive SR and literacy outcomes. Age and gender accounted for limited variance in numeracy outcomes. Results from both studies suggest that the Ontario Ministry of Education should take steps to improve the quality of the FDELK program by incorporating evidence-based guidelines and goals for play, reducing Kindergarten class sizes to more effectively scaffold learning, and revising curriculum expectations to include a greater focus on SR, literacy, and numeracy skills.
Resumo:
Computer games have now been around for over three decades and the term serious games has been attributed to the use of computer games that are thought to have educational value. Game-based learning (GBL) has been applied in a number of different fields such as medicine, languages and software engineering. Furthermore, serious games can be a very effective as an instructional tool and can assist learning by providing an alternative way of presenting instructions and content on a supplementary level, and can promote student motivation and interest in subject matter resulting in enhanced learning effectiveness. REVLAW (Real and Virtual Reality Law) is a research project that the departments of Law and Computer Science of Westminster University have proposed as a new framework in which law students can explore a real case scenario using Virtual Reality (VR) technology to discover important pieces of evidence from a real-given scenario and make up their mind over the crime case if this is a murder or not. REVLAW integrates the immersion into VR as the perception of being physically present in a non-physical world. The paper presents the prototype framework and the mechanics used to make students focus on the crime case and make the best use of this immersive learning approach.
Resumo:
This study investigates the degree to which textual complexity indices applied on students’ online contributions, corroborated with a longitudinal analysis performed on their weekly posts, predict academic performance. The source of student writing consists of blog and microblog posts, created in the context of a project-based learning scenario run on our eMUSE platform. Data is collected from six student cohorts, from six consecutive installments of the Web Applications Design course, comprising of 343 students. A significant model was obtained by relying on the textual complexity and longitudinal analysis indices, applied on the English contributions of 148 students that were actively involved in the undertaken projects.
Resumo:
The efficiency of lecturing or large group teaching has been called into question for many years. An abundance of literature details the components of effective teaching which are not provided in the traditional lecture setting, with many alternative methods of teaching recommended. However, with continued constraints on resources large group teaching is here to stay and student’s expect and are familiar with this method.
Technology Enhanced Learning may be the way forward, to prevent educators from “throwing out the baby with the bath water”. TEL could help Educator’s especially in the area of life sciences which is often taught by lectures to engage and involve students in their learning, provide feedback and incorporate the “quality” of small group teaching, case studies and Enquiry Based Learning into the large group setting thus promoting effective and deep learning.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In this paper we envision didactical concepts for university education based on self-responsible and project-based learning and outline principles of adequate technical support. We use the scenario technique describing how a fictive student named Anna organizes her studies of informatics at a fictive university from the first days of her studies to make a career for herself.(DIPF/Orig.)
Resumo:
In most e-learning scenarios, communication and on-line collaboration is seen as an add-on feature to resource based learning. This paper will endeavour to present a pedagogical framework for inverting this view and putting communities of practice as the basic paradigm for e-learning. It will present an approach currently being used in the development of a virtual Radiopharmacy community, called VirRAD, and will discuss how theory can lead to an instructional design approach to support technologically enhanced learning.(DIPF/Orig.)
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, Programa de Pós-Graducação em Informática, 2016.
Resumo:
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
Resumo:
Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.
Resumo:
My dissertation emphasizes a cognitive account of multimodality that explicitly integrates experiential knowledge work into the rhetorical pedagogy that informs so many composition and technical communication programs. In these disciplines, multimodality is widely conceived in terms of what Gunther Kress calls “socialsemiotic” modes of communication shaped primarily by culture. In the cognitive and neurolinguistic theories of Vittorio Gallese and George Lakoff, however, multimodality is described as a key characteristic of our bodies’ sensory-motor systems which link perception to action and action to meaning, grounding all communicative acts in knowledge shaped through body-engaged experience. I argue that this “situated” account of cognition – which closely approximates Maurice Merleau-Ponty’s phenomenology of perception, a major framework for my study – has pedagogical precedence in the mimetic pedagogy that informed ancient Sophistic rhetorical training, and I reveal that training’s multimodal dimensions through a phenomenological exegesis of the concept mimesis. Plato’s denigration of the mimetic tradition and his elevation of conceptual contemplation through reason, out of which developed the classic Cartesian separation of mind from body, resulted in a general degradation of experiential knowledge in Western education. But with the recent introduction into college classrooms of digital technologies and multimedia communication tools, renewed emphasis is being placed on the “hands-on” nature of inventive and productive praxis, necessitating a revision of methods of instruction and assessment that have traditionally privileged the acquisition of conceptual over experiential knowledge. The model of multimodality I construct from Merleau-Ponty’s phenomenology, ancient Sophistic rhetorical pedagogy, and current neuroscientific accounts of situated cognition insists on recognizing the significant role knowledges we acquire experientially play in our reading and writing, speaking and listening, discerning and designing practices.
Resumo:
Introducción: La incidencia del cáncer de piel melanoma y no melanoma es un problema de salud pública a nivel mundial. El incremento en la incidencia del cáncer de piel en los últimos años se debe a múltiples factores como: cambios en los estilos de vida, el envejecimiento de la población, cambios ambientales, el desconocimiento a la exposición a la radiación ultravioleta (RUV) durante la práctica de actividad física sin elementos de fotoprotección, siendo éste último reconocido como el principal factor de riesgo. Objetivo: Evaluar los efectos de una intervención educativa en los conocimientos y comportamientos relacionados con la fotoprotección durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia. Métodos: Estudio de intervención, antes y después, no controlado en 281 estudiantes de los grados noveno, décimo y once de estratos 1-3 de un colegio público de Bogotá, con seguimiento a 1, 3 y 6 meses post-intervención. Se evaluaron los conocimientos y los hábitos de fotoprotección mediante un cuestionario Cancer Awareness Measure (CAM) y el modelo Transteórico de cambio comportamental de Prochaska y Di Clemente. El estudio se realizó durante el primer semestre de 2015 con 4 sesiones educativas de 60 minutos apoyadas con material audiovisual y pedagógico, acorde a la Guía para la Comunicación Educativa en el marco el control del cáncer publicada por el Instituto Nacional de Cancerología. Resultados: Del grupo de estudiantes que participaron del estudio, el 52,3% eran hombres, el promedio de edad fue de 15,46 ± 1,2 años. El tipo de piel predominante fue la trigueña con 65,8%. La intervención educativa produjo cambios significativos en los conocimientos de foto protección, finalizado el seguimiento al sexto mes. En cuanto a la prevención los estudiantes refirieron tener conocimiento de cómo examinar su piel en el momento basal (12,5% n=35), presentándose un aumento significativo de 62,6% (n=211) al sexto mes (p<0,05). Conclusión: El estudio demostró la efectividad de la intervención educativa, evidenciando cambios significativos en los conocimientos en fotoprotección y comportamientos preventivos del cáncer de piel durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia.
Resumo:
El propósito de este estudio es medir los efectos que tiene el videojuego League of Legends en los procesos cognitivos de memoria de trabajo visual (MVT) y solución de problemas (SP). Para medir dichos efectos se implementó un diseño pre test-post con un grupo experimental y uno control, compuestos cada uno por siete participantes, en donde se evaluaron los procesos previamente mencionados utilizando los cubos de Corsi para MVT y las matrices del WAIS III para SP. Después de realizar los respectivos entrenamientos se encontraron resultados significativos en los diferentes momentos de aplicación. En el grupo experimental se encontraron diferencias en la variable dependiente SP, mientras que en el grupo control en MVT, pero no en la interacción entre grupos ni diferencias entre grupos, lo que sugiere un efecto de familiarización a la prueba.