970 resultados para mutant
Resumo:
Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5'-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, beta-phenylserine or d-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4x10(-4) s-1 at 50 microM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 microM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 microM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 microM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 degrees C) than that of the wild-type enzyme (56 degrees C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently 'open' form and the increased apparent Tm could be due to enhanced subunit interactions.
Resumo:
Individual copies of tRNA1Gly from within the multigene family in Bombyx mori could be classified based on in vitro transcription in homologous nuclear extracts into three categories of highly, moderately, or weakly transcribed genes. Segregation of the poorly transcribed gene copies 6 and 7, which are clustered in tandem within 425 base pairs, resulted in enhancement of their individual transcription levels, but the linkage itself had little influence on the transcriptional status. For these gene copies, when fused together generating a single coding region, transcription was barely detectable, which suggested the presence of negatively regulating elements located in the far flanking sequences. They exerted the silencing effect on transcription overriding the activity of positive regulatory elements. Systematic analysis of deletion, chimeric, and mutant constructs revealed the presence of a sequence element TATATAA located beyond 800 nucleotides upstream to the coding region acting as negative modulator, which when mutated resulted in high level transcription. Conversely, a TATATAA motif reintroduced at either far upstream or far downstream flanking regions exerted a negative effect on transcription. The location of cis-regulatory sequences at such farther distances from the coding region and the behavior of TATATAA element as negative regulator reported here are novel. These element(s) could play significant roles in activation or silencing of genes from within a multigene family, by recruitment or sequestration of transcription factors.
Resumo:
An experimental system was developed for assessing the role ofhetgenes in heterokaryon formation inNeurosporain nature. Burned sugar cane segments planted in soil were infected using a mixture of mutant ascospores of two genotypes.Neurosporaramified in the cane and erupted as distinct pustules of conidia. When ascospores carried identicalhetalleles, the (macro) conidial pustules which formed were heterokaryotic. On the other hand, when ascospores carried dissimilarhetalleles, the pustules were homokaryotic. These results showed that stable heterokaryons between compatible strains can form in nature. When two strains are growing together on a natural substrate, heterozygosity athetloci serves to maintain their individuality.
Resumo:
Background & objectives: Group A Streptococcus, causative agent of several clinical manifestations codes for multiple protein invasins which help the bacterium to enter non-phagocytic cells. C5a peptidase (SCPA) is a surface protein conserved among different serotypes of M1 strain. The present study was taken up to study SCPA promoted fibronectin independent entry of GAS into epithelial cells. Methods: An isogenic 90226 emm1DeltaAB (M1(-)) mutant was constructed, with thermosensitive pGhost vector. This isogenic M1(-) mutant expressed SCPA on the surface as determined by Western blotting and immunofluorescence. Results: On preincubation with anti-SCPA serum, the isogenic M1(-) strain exhibited 54 per cent decreased invasion as compared to the bacteria incubated with control serum. Also, purified recombinant SCPA proteins blocked internalization of M1(-) streptococci into HEp-2 cells. The M1(-) strain invaded at the same efficiency in the presence or absence of fibronectin. Interpretation & conclusion: These results suggested that SCPA acted as a potential invasin of group A streptococcus and promoted invasion independent of fibronectin.
Resumo:
The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.
Resumo:
Viral genomes are encapsidated within protective protein shells. This encapsidation can be achieved either by a co-condensation reaction of the nucleic acid and coat proteins, or by first forming empty viral particles which are subsequently packaged with nucleic acid, the latter mechanism being typical for many dsDNA bacteriophages. Bacteriophage PRD1 is an icosahedral, non-tailed dsDNA virus that has an internal lipid membrane, the hallmark of the Tectiviridae family. Although PRD1 has been known to assemble empty particles into which the genome is subsequently packaged, the mechanism for this has been unknown, and there has been no evidence for a separate packaging vertex, similar to the portal structures used for packaging in the tailed bacteriophages and herpesviruses. In this study, a unique DNA packaging vertex was identified for PRD1, containing the packaging ATPase P9, packaging factor P6 and two small membrane proteins, P20 and P22, extending the packaging vertex to the internal membrane. Lack of small membrane protein P20 was shown to totally abolish packaging, making it an essential part of the PRD1 packaging mechanism. The minor capsid proteins P6 was shown to be an important packaging factor, its absence leading to greatly reduced packaging efficiency. An in vitro DNA packaging mechanism consisting of recombinant packaging ATPase P9, empty procapsids and mutant PRD1 DNA with a LacZ-insert was developed for the analysis of PRD1 packaging, the first such system ever for a virus containing an internal membrane. A new tectiviral sequence, a linear plasmid called pBClin15, was identified in Bacillus cereus, providing material for sequence analysis of the tectiviruses. Analysis of PRD1 P9 and other putative tectiviral ATPase sequences revealed several conserved sequence motifs, among them a new tectiviral packaging ATPase motif. Mutagenesis studies on PRD1 P9 were used to confirm the significance of the motifs. P9-type putative ATPase sequences carrying a similar sequence motif were identified in several other membrane containing dsDNA viruses of bacterial, archaeal and eukaryotic hosts, suggesting that these viruses may have similar packaging mechanisms. Interestingly, almost the same set of viruses that were found to have similar putative packaging ATPases had earlier been found to share similar coat protein folds and capsid structures, and a common origin for these viruses had been suggested. The finding in this study of similar packaging proteins further supports the idea that these viruses are descendants of a common ancestor.
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
The neuroectodermal tissue close to the midbrain hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) regulates cellular survival, patterning and proliferation in the midbrain (Mb) and rhombomere 1 (R1) of the hindbrain. Signaling molecules of the IsO, such as fibroblast growth factor 8 (FGF8) and WNT1 are expressed in distinct bands of cells around the MHB. It has been previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. In the present study, we have compared the gene expression profiles of wild-type and Fgfr1 mutant embryos. We show that the loss of Fgfr1 results in the downregulation of several genes expressed close to the MHB and in the disappearance of gene expression gradients in the midbrain and R1. Our microarray screen identified several previously uncharacterized genes which may participate in the development of midbrain R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. As Wnt1 expression at the MHB region requires the FGF signaling pathway, WNT target genes, including Drapc1, were also identified in our screen. The microarray data analysis also suggested that the cells next to the midbrain hindbrain boundary express distinct cell cycle regulators. We showed that the cells close to the border appeared to have unique features. These cells proliferate less rapidly than the surrounding cells. Unlike the cells further away from the boundary, these cells express Fgfr1 but not the other FGF receptors. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.
Resumo:
In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.
Resumo:
We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.
Resumo:
This thesis work focuses on the role of TGF-beta family antagonists during the development of mouse dentition. Tooth develops through an interaction between the dental epithelium and underlying neural crest derived mesenchyme. The reciprocal signaling between these tissues is mediated by soluble signaling molecules and the balance between activatory and inhibitory signals appears to be essential for the pattern formation. We showed the importance of Sostdc1 in the regulation of tooth shape and number. The absence of Sostdc1 altered the molar cusp patterning and led to supernumerary tooth formation both in the molar and incisor region. We showed that initially, Sostdc1 expression is in the mesenchyme, suggesting that dental mesenchyme may limit supernumerary tooth induction. We tested this in wild-type incisors by minimizing the amount of mesenchymal tissue surrounding the incisor tooth germs prior to culture in vitro. The cultured teeth phenocopied the extra incisor phenotype of the Sostdc1-deficient mice. Furthermore, we showed that minimizing the amount of dental mesenchyme in cultured Sostdc1-deficient incisors caused the formation of additional de novo incisors that resembled the successional incisor development resulting from activated Wnt signaling. Sostdc1 seemed to be able to inhibit both mesenchymal BMP4 and epithelial canonical Wnt signaling, which thus allows Sostdc1 to restrict the enamel knot size and regulate the tooth shape and number. Our work emphasizes the dual role for the tooth mesenchyme as a suppressor as well as an activator during tooth development. We found that the placode, forming the thick mouse incisor, is prone to disintegration during initiation of tooth development. The balance between two mesenchymal TGF-beta family signals, BMP4 and Activin is essential in this regulation. The inhibition of BMP4 or increase in Activin signaling led to the splitting of the large incisor placode into two smaller placodes resulting in thin incisors. These two signals appeared to have different effects on tooth epithelium and the analysis of the double null mutant mice lacking Sostdc1 and Follistatin indicated that these TGF-beta inhibitors regulate the mutual balance of BMP and Activin in vivo. In addition, this work provides an alternative explanation for the issue of incisor identity published in Science by Tucker et al. in 1998 and proposes that the molar like morphology that can be obtained by inhibiting BMP signaling is due to partial splitting of the incisor placodes and not due to change in tooth identity from the incisor to the molar. This thesis work presents possible molecular mechanisms that may have modified the mouse dental pattern during evolution leading to the typical rodent dentition of modern mouse. The rodent dentition is specialized for gnawing and consists of two large continuously growing incisors and toothless diastema region separating the molars and incisors. The ancestors of rodents had higher number of more slender incisors together with canines and premolars. Additionally, murine rodents, which include the mouse, have lost their ability for tooth replacement. This work has revealed that the inhibitory molecules appear to play a role in the tooth number suppression by delineating the spatial and temporal action of the inductive signals. The results suggest that Sostdc1 plays an essential role in several stages of tooth development through the regulation of both the BMP and Wnt pathway. The work shows a dormant sequential tooth forming potential present in wild type mouse incisor region and gives a new perspective on tooth suppression by dental mesenchyme. It reveals as well a novel mechanism to create a large mouse incisor through the regulation of mesenchymal balance between inductive and inhibitory signals.
Resumo:
Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.
Resumo:
For most RNA viruses RNA-dependent RNA polymerases (RdRPs) encoded by the virus are responsible for the entire RNA metabolism. Thus, RdRPs are critical components in the viral life cycle. However, it is not fully understood how these important enzymes function during viral replication. Double-stranded RNA (dsRNA) viruses perform the synthesis of their RNA genome within a proteinacous viral particle containing an RdRP as a minor constituent. The phi6 bacteriophage is the best-studied dsRNA virus, providing an excellent background for studies of its RNA synthesis. The purified recombinant phi6 RdRP is highly active in vitro and it possesses both RNA replication and transcription activities. The crystal structure of the phi6 polymerase, solved in complex with a number of ligands, provides a working model for detailed in vitro studies of RNA-dependent RNA polymerization. In this thesis, the primer-independent initiation of the phi6 RdRP was studied in vitro using biochemical and structural methods. A C-terminal, four-amino-acid-long loop protruding into the central cavity of the phi6 RdRP has been suggested to stabilize the incoming nucleotides of the initiation complex formation through stacking interactions. A similar structural element has been found from several other viral RdRPs. In this thesis, this so-called initiation platform loop was subjected to site-directed mutagenesis to address its role in the initiation. It was found that the initiation mode of the mutants is primer-dependent, requiring either an oligonucleotide primer or a back-priming initiation mechanism for the RNA synthesis. The crystal structure of a mutant RdRP with altered initiation platform revealed a set of contacts important for primer-independent initiation. Since phi6 RdRP is structurally and functionally homologous to several viral RdRPs, among them the hepatitis C virus RdRP, these results provide further general insight to understand primer-independent initiation. In this study it is demonstrated that manganese phasing could be used as a practical tool for solving structures of large proteins with a bound manganese ion. The phi6 RdRP was used as a case study to obtain phases for crystallographic analysis. Manganese ions are naturally bound to the phi6 RdRP at the palm domain of the enzyme. In a crystallographic experiment, X-ray diffraction data from a phi6 RdRP crystal were collected at a wavelength of 1.89 Å, which is the K edge of manganese. With this data an automatically built model of the core region of the protein could be obtained. Finally, in this work terminal nucleotidyl transferase (TNTase) activity of the phi6 RdRP was documented in the isolated polymerase as well as in the viral particle. This is the first time that such an activity has been reported in a polymerase of a dsRNA virus. The phi6 RdRP used uridine triphosphates as the sole substrate in a TNTase reaction but could accept several heterologous templates. The RdRP was able to add one or a few non-templated nucleotides to the 3' end of the single- or double-stranded RNA substrate. Based on the results on particle-mediated TNTase activity and previous structural information of the polymerase, a model for termination of the RNA-dependent RNA synthesis is suggested in this thesis.