941 resultados para dye intercalation
Resumo:
Background We have used serial visual analogue scores to demonstrate disturbances of the appetite profile in dialysis patients. This is potentially important as dialysis patients are prone to malnutrition yet have a lower nutrient intake than controls. Appetite disturbance may be influenced by accumulation of appetite inhibitors such as leptin and cholecystokinin (CCK) in dialysis patients. Methods Fasting blood samples were drawn from 43 controls, 50 haemodialysis (HD) and 39 peritoneal dialysis (PD) patients to measure leptin and CCK. Hunger and fullness scores were derived from profiles compiled using hourly visual analogue scores. Nutrient intake was derived from 3 day dietary records. Results Fasting CCK was elevated for PD (6.73 ± 4.42 ng/l vs control 4.99 ± 2.23 ng/l, P < 0.05; vs HD 4.43 ± 2.15 ng/l, P < 0.01). Fasting CCK correlated with the variability of the hunger (r = 0.426, P = 0.01) and fullness (r = 0.52, P = 0.002) scores for PD. There was a notable relationship with the increase in fullness after lunch for PD (r = 0.455, P = 0.006). When well nourished PD patients were compared with their malnourished counterparts, CCK was higher in the malnourished group (P = 0.004). Leptin levels were higher for the dialysis patients than controls (HD and PD, P < 0.001) with pronounced hyperleptinaemia evident in some PD patients. Control leptin levels demonstrated correlation with fullness scores (e.g. peak fullness, r = 0.45, P = 0.007) but the dialysis patients did not. PD nutrient intake (energy and protein intake, r = -0.56, P < 0.0001) demonstrated significant negative correlation with leptin. Conclusion Increased CCK levels appear to influence fullness and hunger perception in PD patients and thus may contribute to malnutrition. Leptin does not appear to affect perceived appetite in dialysis patients but it may influence nutrient intake in PD patients via central feeding centres.
Resumo:
Objective: To determine the effect of zinc supplementation on taste perception in a group of hemodialysis patients. Design and Setting: Double-blind randomized placebo-controlled study in a teaching hospital dialysis unit. Patients: Fifteen stable hemodialysis patients randomized to placebo (6 male, 2 female; median age, 67; range, 30 to 72 years) or treatment (5 male, 2 female; median age, 60; range, 31 to 76 years). Intervention: Treatment group received zinc sulfate 220 mg per day for 6 weeks, and the placebo group received an apparently identical dummy pill. Main Outcome Measures: Taste scores by visual analogue scales, normalized protein catabolic rate and plasma, whole blood and red cell zinc levels. Results: At baseline, sweet and salt tastes were identified correctly by both groups. Sour was often confused with salt. Sour solutions of different concentrations were not distinguishable. Taste scores were not different after 6 weeks for either group. There was no significant increment in zinc levels or normalized protein catabolic rate for either group. Conclusion: We found a disturbance of taste perception in hemodialysis patients, particularly for the sour modality, which was not corrected by this regimen of zinc supplementation. These results cast doubts on the conclusions of earlier studies that indicated an improvement in taste after zinc supplementation.
Resumo:
OBJECTIVE Malnutrition is common among peritoneal dialysis (PD) patients. Reduced nutrient intake contributes to this. It has long been assumed that this reflects disturbed appetite. We set out to define the appetite profiles of a group of PD patients using a novel technique. DESIGN Prospective, cross-sectional comparison of PD patients versus controls. SETTING Teaching hospital dialysis unit. PATIENTS 39 PD patients and 42 healthy controls. INTERVENTION Visual analog ratings were recorded at hourly intervals to generate daily profiles for hunger and fullness. Summary statistics were generated to compare the groups. Food intake was measured using 3-day dietary records. MAIN OUTCOME MEASURES Hunger and fullness profiles. Derived hunger and fullness scores. RESULTS Controls demonstrated peaks of hunger before mealtimes, with fullness scores peaking after meals. The PD profiles had much reduced premeal hunger peaks. A postmeal reduction in hunger was evident, but the rest of the trace was flat. The PD fullness profile was also flatter than in the controls. Mean scores were similar despite the marked discrepancy in the profiles. The PD group had lower peak hunger and less diurnal variability in their hunger scores. They also demonstrated much less change in fullness rating around mealtimes, while the mean and peak fullness scores were little different. The reported nutrient intake was significantly lower for PD. CONCLUSION The data suggest that PD patients normalize their mean appetite perception at a lower level of nutrient intake than controls, suggesting that patient-reported appetite may be misleading in clinical practice. There is a loss of the usual daily variation for the PD group, which may contribute to their reduced food intake. The technique described here could be used to assess the impact of interventions upon the abnormal PD appetite profile.
Resumo:
This paper reviews some aspects of calcium phosphate chemistry since phosphate in juice is an important parameter in all sugar juice clarification systems. It uses basic concepts to try and explain the observed differences in clarification performance obtained with various liming techniques. The paper also examines the current colorimetric method used for the determination of phosphate in sugar juice. In this method, a phosphomolybdate blue complex formed due to the addition of a dye is measured at 660 nm. Unfortunately, at this wavelength there is interference of the colour arising from within the juice and results in the underestimation of the amount of soluble inorganic phosphate content of juice. It is suggested that phosphate analysis be conducted at the higher wavelength of 875 nm where the interference of the juice colour is minimised.
Resumo:
Background Malnutrition is common among dialysis patients and is associated with an adverse outcome. One cause of this is a persistent reduction in nutrient intake, suggesting an abnormality of appetite regulation. Methods We used a novel technique to describe the appetite profile in 46 haemodialysis (HD) patients and 40 healthy controls. The Electronic Appetite Rating System (EARS) employs a palmtop computer to collect hourly ratings of motivation to eat and mood. We collected data on hunger, desire to eat, fullness, and tiredness. HD subjects were monitored on the dialysis day and the interdialytic day. Controls were monitored for 1 or 2 days. Results Temporal profiles of motivation to eat for the controls were similar on both days. Temporal profiles of motivation to eat for the HD group were lower on the dialysis day. Mean HD scores were not significantly different from controls. Dietary records indicated that dialysis patients consumed less food than controls. Conclusions Our data indicate that the EARS can be used to monitor subjective appetite states continuously in a group of HD patients. A HD session reduces hunger and desire to eat. Patients feel more tired after dialysis. This does not correlate with their hunger score, but does correlate with their fullness rating. Nutrient intake is reduced, suggesting a resetting of appetite control for the HD group. The EARS may be useful for intervention studies.
Resumo:
The nature of the relationship that is negotiated, developed and maintained between a clinical supervisor and supervisee is central to effectively engage in clinical work, to promote professional and personal development, and to ensure consistent ethical practice. In this chapter attention is given to the challenges, importance and benefits of the supervisory relationship. The ability to form and sustain relationships in supervision and in clinical practice is more crucial than specific knowledge and therapeutic skills (Dye, 2004). Attention to parallel process, the working alliance, multiple roles, expectations and acculturative issues are addressed. This is an introduction to some of the most salient issues concerning the supervisory relationship and is a review of concepts and processes discussed in greater depth throughout this textbook. The reader is encouraged to utilise the references and suggested readings to deepen their understanding of the supervisory relationship.
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.
Resumo:
Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.
Resumo:
The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.
Resumo:
The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.