889 resultados para detecção de QTLs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Medicina Tropical, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cultivated strawberry (Fragaria x ananassa) is the berry fruit most consumed worldwide and is well-known for its delicate flavour and nutritional properties. However, fruit quality attributes have been lost or reduced after years of traditional breeding focusing mainly on agronomical traits. To face the obstacles encountered in the improvement of cultivated crops, new technological tools, such as genomics and high throughput metabolomics, are becoming essential for the identification of genetic factors responsible of organoleptic and nutritive traits. Integration of “omics” data will allow a better understanding of the molecular and genetic mechanisms underlying the accumulation of metabolites involved in the flavour and nutritional value of the fruit. To identify genetic components affecting/controlling? fruit metabolic composition, here we present a quantitative trait loci (QTL) analysis using a 95 F1 segregating population derived from genotypes ‘1392’, selected for its superior flavour, and ‘232’ selected based in high yield (Zorrilla-Fontanesi et al., 2011; Zorrilla-Fontanesi et al., 2012). Metabolite profiling was performed on red stage strawberry fruits using gas chromatography hyphenated to time-of-flight mass spectrometry, which is a rapid and highly sensitive approach, allowing a good coverage of the central pathways of primary metabolism. Around 50 primary metabolites, including sugars, sugars derivatives, amino and organic acids, were detected and quantified after analysis in each individual of the population. QTL mapping was performed on the ‘232’ x ‘1392’ population separately over two successive years, based on the integrated linkage map (Sánchez-Sevilla et al., 2015). First, significant associations between metabolite content and molecular markers were identified by the non-parametric test of Kruskal-Wallis. Then, interval mapping (IM), as well as the multiple QTL method (MQM) allowed the identification of QTLs in octoploid strawberry. A permutation test established LOD thresholds for each metabolite and year. A total of 132 QTLs were detected in all the linkage groups over the two years for 42 metabolites out of 50. Among them, 4 (9.8%) QTLs for sugars, 9 (25%) for acids and 7 (12.7%) for amino acids were stable and detected in the two successive years. We are now studying the QTLs regions in order to find candidate genes to explain differences in metabolite content in the different individuals of the population, and we expect to identify associations between genes and metabolites which will help us to understand their role in quality traits of strawberry fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Geomática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado Integrado em Medicina Veterinária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se, por meio desta pesquisa, ampliar o conhecimento das relações bióticas dos ambientes naturais de ocorrência de castanheiras nativas no Amazonas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: Diversos surtos de Salmonella ocasionados pelo consumo de tomate contaminados com este micro-organismo têm sido relatados ultimamente, o que torna primordial a investigação sobre a presença desse patógeno nesse alimento. Métodos que permitam a avaliação rápida da presença de Salmonella em alimentos são de suma importância. O objetivo desse estudo foi comparar o método tradicional da Food and Drug Administration - Bacteriologycal Analytical Manual (FDA-BAM) com um método rápido da mini Vitek Immuno Diagnostic System Assay (Mini?Vidas-SLM)-bioMérieux, para detecção de Salmonella Brazil inoculada artificialmente na superfície de tomates. Foram analisadas 215 amostras de tomates inoculadas artificialmente com Salmonella Brazil com níveis de inóculos variando de 0,4 a 940 UFC/tomate. Os resultados obtidos mostraram que os métodos estudados apresentaram uma ótima concordância entre si, para todas as faixas de inóculo analisadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented