946 resultados para computational fluid-dynamics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize in more than just one way to the driving systems. These different forms of synchronization are to be understood as generalized synchronization states in which the motions of drive and response are in complete correlation, but the phase space distance between them does not converge to zero. In this case the synchronization phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins of attraction and special responses to external noise. It is shown, by means of a computer simulation of various nonlinear systems, that: (i) the decay to the generalized synchronization states is exponential, (ii) the basins of attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the parameters, and (iii) the effect of external noise is to weaken the synchronization, and in some cases to produce jumps between the various synchronization states available

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main physical long-scale processes occurring in Lake Banyoles are reviewed as a tribute to Prof. Margalef. These processesinclude the water fluxes below the surface of the lake, the behavior of the sediment in suspension in the basins, the heat fluxesat the surface and at the bottom layers, the internal seiching, the formation of a baroclinic current due to differences in coolingbetween the two lobes, the mixing dynamics, the meromictic behavior of some of the basins and the formation and dynamics of hydrothermal plumes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The studies of flow phenomena, heat and mass transfer in microchannel reactors are beneficial to estimate and evaluate the ability of microchannel reactors to be operated for a given process reaction such as Fischer-Tropsch synthesis. The flow phenomena, for example, the flow regimes and flow patterns in microchannel reactors for both single phase and multiphase flow are affected by the configuration of the flow channel. The reviews of the previous works about the analysis of related parameters that affect the flow phenomena are shown in this report. In order to predict the phenomena of Fischer-Tropsch synthesis in microchannel reactors, the 3-dimensional computational fluid dynamic simulation with commercial software package FLUENT was done to study the flow phenomena and heat transfer for gas phase Fischer-Tropsch products flow in rectangular microchannel with hydraulic diameter 500 ¿m and length 15 cm. Numerical solution with slip boundary condition was used in the simulation and the flowphenomena and heat transfer were determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen theknowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery to the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Braytoncycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of the future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. The high speed machinery concept allows one to build an application with only one rotating shaft including all the major parts: the high speed motor, the compressor and the turbine wheel. The use of oil free bearings and high rotational speed outlines give several advantages compared to conventional machineries: light weight, compact structure, safe operation andhigher efficiency at a large operational region. There are always problems whentheory is applied to practice. The calibrations of pressure, temperature and humidity probes were made with care but still measurable errors were not negligible. Several different separators were examined and in all cases the content of the separated water was not exact. Due to the compact sizes and structures of the prototypes, the process measurement was slightly difficult. The experimental results agree well with the theoretical calculations. These experiments prove the operation of the process and lay a ground for the further development. The results of this work give very promising possibilities for the design of new, commercially competitive applications that use high speed machinery and the reversed Brayton cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a massless fluid (density = 0), the steady flow along a duct is governed exclusively by viscous losses. In this paper, we show that the velocity profile obtained in this limit can be used to calculate the pressure drop up to the first order in density. This method has been applied to the particular case of a duct, defined by two plane-parallel discs. For this case, the first-order approximation results in a simple analytical solution which has been favorably checked against numerical simulations. Finally, an experiment has been carried out with water flowing between the discs. The experimental results show good agreement with the approximate solution

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of three-dimensional scroll rings with spatiotemporal random excitability is investigated numerically using the FitzHugh-Nagumo model. Depending on the correlation time and length scales of the fluctuations, the lifetime of the ring filament is enlarged and a resonance effect between the time scale of the scroll ring and the time correlation of the noise is observed. Numerical results are interpreted in terms of a simplified stochastic model derived from the kinematical equations for three-dimensional excitable waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of three-dimensional scroll rings with spatiotemporal random excitability is investigated numerically using the FitzHugh-Nagumo model. Depending on the correlation time and length scales of the fluctuations, the lifetime of the ring filament is enlarged and a resonance effect between the time scale of the scroll ring and the time correlation of the noise is observed. Numerical results are interpreted in terms of a simplified stochastic model derived from the kinematical equations for three-dimensional excitable waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A la UdGhi ha 2 aerogeneradors minieòlics: el del terrat del P2 i un de més petit allaboratori d’energies. Aquest segon aerogenerador minieòlic és el que s’ha utilitzat en aquestprojecte. Es tracta d’un Air-X de la casa Technosun amb les següents característiques:- Té un pes de 6Kg, un radi de 0,582 metres, un TSR de 8,8 i unapotència de 545W.- Perfil de la pala tipus SD2030.- Velocitat d’engegada de 3m/s.-Amb vents forts (més de 15m/s) un dispositiu electrònic redueix lavelocitat fins a 600rpm, reduint les càrregues sobre la turbina i l’estructuramentre encara segueix produint energia.- Baix manteniment. Només consta de dues parts mòbils.L’objecte que s’ha plantejat per aquest projecte ha estat trobar la corbade potència del minigenerador Air-X mitjançant simulació amb CFD, iutilitzant només les dades geomètriques de l’aparell

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Una empresa familiar d’embotits ecològics especialitzada en l’elaboració de xoriç, volampliar la seva producció. Té com apart clau el procés d’estufatge i l’assecament. Aquests processos, que tenen lloc alsassecadors, consisteixen en fer re-circular aire a unes temperatures determinades durant unscerts temps, refredant aquest aire quan surt de la sala per extreure’n part del vapor d’aiguaque conté, i tornant-lo a escalfar per poder absorbir més aigua en tornar entrar a la sala.L’abast d’aquest projecte consisteix en la descripció del funcionament dels assecadors,i la realització de simulacions de flux d’aire i temperatura per tal de poder optimitzar unassecador concret. Dins aquest assecador es faran modificacions com pot ser l’alçada lliure quequeda entre la filera més elevada de xoriç i el sostre o el radi inferior que tenen aquestsaparells per tal d’obtenir una geometria òptima d’una sala d’assecatge. L’estudi que es duu a terme consta del comportament del flux d’aire i del flux detemperatura per tal de poder observar els punts crítics i poder determinar els paràmetres queinflueixen en el seu bon funcionament

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.