999 resultados para TEMPERATURE THRESHOLD
Resumo:
Kivihiokkeen valmistus on energiaintensiivistä. Käytetystä energiasta muuttuu yli 90 prosenttia lämmöksi. Hiomolla käytetystä lämmöksi muuttuneesta tehosta voidaan paperikoneelle siirtää noin puolet. Mekaanisen massan valmistuksen ja paperikoneen vesikierrot erotetaan toisistaan häiriöaineiden kulkeutumisen estämiseksi. Vesikiertojen erottamisella katkaistaan myös lämmön siirtyminen hiomolta paperikoneelle massojen mukana. Käyttämällä lämmönsiirtimiä hiomon vesien jäähdytyksessä, voidaan hiomon hiomakoneiden suihkuvesivesilämpötilaa alentaa. Lämmönsiirto vaikuttaa paperikoneella annostelumassojen laimennusten kautta perälaatikkolämpötilaa kohottavasti. Työn tehtäväksi määritettiin kesäkuukausina esiintyvä hiomakoneiden suihkuveden raakavesijäähdytyksen tarpeen poistaminen ensisijaisesti niin, että ylimäärälämpö hyödynnetään tehtaalla. Työn muiksi tavoitteiksi muodostui annostelumassojen lämpötilan hallinta, etenkin muutokset, joilla voidaan nostaa hylkymassan annostelulämpötilaa. Työn kokeellinen osa tehtiin UPM Kymmene Oyj Kajaanin tehtailla syksyn 2004 aikana. Työssä tutkittiin WinGEMS simulointiohjelmalla tehtyjen mallien avulla lämmön siirtymistä hiomon ja paperikone 2:n välillä, sekä lämmönsiirtoa pois tasealueelta. Simulointimalli nykytilanteesta rakennettiin yksityiskohtaisesti nykyisen tuotantoprosessin kaltaiseksi ja siitä muokattiin eri vaihtoehtoja, joilla ratkaistiin tutkimukselle asetetut tehtävät. Kytkentämuutoksilla pystyttiin siirtämään hiomolta yli 85 % hiomakoneiden suihkuveden ylimäärälämmöstä ilman uusia laitehankintoja. Asentamalla lopuksi lämmönsiirrin hiomon puhdassuodoslinjaan, hiomakoneiden suihkuveden jäähdytystarve poistettiin kokonaan. Samalla alennettiin valkaisuun menevän massan lämpötilaa, jolloin peroksidivalkaisun kemikaalikulutus väheni yli 10 %. Lämmönsiirrinverkostosta tehtiin kesätilanteen pinch-analyysi, jolla selvitettiin prosessin lämmitys ja jäähdytystarpeet. Analyysin perusteella selvisi, että kytkennöissä ei rikota pinch sääntöjä ja, että prosessissa esiintyy kynnysongelma, jossa prosessi tarvitsee ainoastaan jäähdytystä.
Resumo:
INTRODUCTION: Perfusion-CT (PCT) processing involves deconvolution, a mathematical operation that computes the perfusion parameters from the PCT time density curves and an arterial curve. Delay-sensitive deconvolution does not correct for arrival delay of contrast, whereas delay-insensitive deconvolution does. The goal of this study was to compare delay-sensitive and delay-insensitive deconvolution PCT in terms of delineation of the ischemic core and penumbra. METHODS: We retrospectively identified 100 patients with acute ischemic stroke who underwent admission PCT and CT angiography (CTA), a follow-up vascular study to determine recanalization status, and a follow-up noncontrast head CT (NCT) or MRI to calculate final infarct volume. PCT datasets were processed twice, once using delay-sensitive deconvolution and once using delay-insensitive deconvolution. Regions of interest (ROIs) were drawn, and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) in these ROIs were recorded and compared. Volume and geographic distribution of ischemic core and penumbra using both deconvolution methods were also recorded and compared. RESULTS: MTT and CBF values are affected by the deconvolution method used (p < 0.05), while CBV values remain unchanged. Optimal thresholds to delineate ischemic core and penumbra are different for delay-sensitive (145 % MTT, CBV 2 ml × 100 g(-1) × min(-1)) and delay-insensitive deconvolution (135 % MTT, CBV 2 ml × 100 g(-1) × min(-1) for delay-insensitive deconvolution). When applying these different thresholds, however, the predicted ischemic core (p = 0.366) and penumbra (p = 0.405) were similar with both methods. CONCLUSION: Both delay-sensitive and delay-insensitive deconvolution methods are appropriate for PCT processing in acute ischemic stroke patients. The predicted ischemic core and penumbra are similar with both methods when using different sets of thresholds, specific for each deconvolution method.
Resumo:
We studied the reproductive cycle of the sea urchin Arbacia lixula in a subtidal population from northeast Spain over four years using a gonadosomatic index (GSI) and gonad histology. Our results show that the GSI of A. lixula follows a seasonal cycle which peaks in May-July and attains its lowest values in October-November every year. The time course of the GSI matched closely the photoperiod cycle. We also found a remarkable inter-annual variability in the maximum value of GSI, which correlated with mean water temperature during the gonad growth period (winter and spring). Gonad histology was also in agreement with a single gametogenic cycle per year in this species. We explored the application of circular statistics to present and analyse gonadal development data, which allowed us to adequately handle the high intra-individual variability detected, with several developmental stages commonly found within the same gonad. The picture that emerged is one of a gametogenic timing driven by photoperiod, while the amount of reproductive output is determined by temperature. This is coherent with the tropical origin of the species and lends support to recent warnings about an increase in the abundance of this species in the Mediterranean as a result of global warming, with associated increased impact potential in sublittoral communities.
Resumo:
This study evaluated the effect of initial pH values of 4.5, 6.5 and 8.5 of the attractant (protein bait) Milhocina® and borax (sodium borate) in the field, on the capture of fruit flies in McPhail traps, using 1, 2, 4 and 8 traps per hectare, in order to estimate control thresholds in a Hamlin orange grove in the central region of the state of São Paulo. The most abundant fruit fly species was Ceratitis capitata, comprising almost 99% of the fruit flies captured, of which 80% were females. The largest captures of C. capitata were found in traps baited with Milhocina® and borax at pH 8.5. Captures per trap for the four densities were similar, indicating that the population can be estimated with one trap per hectare in areas with high populations. It was found positive relationships between captures of C. capitata and the number of Hamlin oranges damaged, 2 and 3 weeks after capture. It was obtained equations that correlate captures and damage levels which can be used to estimate control thresholds. The average loss caused in Hamlin orange fruits by C. capitata was 2.5 tons per hectare or 7.5% of production.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene (mecC-MRSA) exhibited at 37°C MICs of oxacillin close to those of methicillin-susceptible S. aureus (MSSA). We investigated whether at this temperature, mecC-MRSA strains respond to flucloxacillin treatment like MSSA strains, using a rat model of endocarditis. Flucloxacillin (human-like kinetics of 2 g intravenously every 6 h) cured 80 to 100% of aortic vegetations infected with five different mecC-MRSA strains. These results suggest that mecC-MRSA infections may successfully respond to treatment with β-lactams.
Resumo:
Crops and forests are already responding to rising atmospheric carbon dioxide and air temperatures. Increasing atmospheric CO2 concentrations are expected to enhance plant photosynthesis. Nevertheless, after long-term exposure, plants acclimate and show a reduction in photosynthetic activity (i.e. down-regulation). If in the future the Earth"s temperature is allowed to rise further, plant ecosystems and food security will both face significant threats. The scientific community has recognized that an increase in global temperatures should remain below 2°C in order to combat climate change. All this evidence suggests that, in parallel with reductions in CO2 emissions, a more direct approach to mitigate global warming should be considered. We propose here that global warming could be partially mitigated directly through local bio-geoengineering approaches. For example, this could be done through the management of solar radiation at surface level, i.e. by increasing global albedo. Such an effect has been documented in the south-eastern part of Spain, where a significant surface air temperature trend of -0.3°C per decade has been observed due to a dramatic expansion of greenhouse horticulture.
Resumo:
Gene filtering is a useful preprocessing technique often applied to microarray datasets. However, it is no common practice because clear guidelines are lacking and it bears the risk of excluding some potentially relevant genes. In this work, we propose to model microarray data as a mixture of two Gaussian distributions that will allow us to obtain an optimal filter threshold in terms of the gene expression level.
Resumo:
Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.
Resumo:
Sparus aurata larvae reared under controlled water-temperature conditions during the first 24 days after hatching displayed a linear relationship between age (t) and standard length (SL): SL = 2.68 + 0.19 t (r2 = 0.91l). Increments were laid down in the sagittae with daily periodicity starting on day of hatching. Standard length (SL) and sagittae radius (OR) were correlated: SL(mm) = 2.65 + 0.012 OR(mm). The series of measurements of daily growth increment widths (DWI), food density and water temperature were analyzed by means of time series analysis. The DWI series were strongly autocorrelated, the growth on any one day was dependent upon growth on the previous day. Time series of water temperatures showed, as expected, a random pattern of variation, while food consumed daily was a function of food consumed the two previous days. The DWI series and the food density were correlated positively at lags 1 and 2. The results provided evidence of the importance of food intake upon the sagittae growth when temperature is optimal (20ºC). Sagittae growth was correlated with growth on the previous day, so this should be taken into account when fish growth is derived from sagittae growth rates.
Resumo:
BACKGROUND: Hyperthermia is a frequent complication in patients with acute ischemic stroke. On the other hand, therapeutically induced hypothermia has shown promising potential in animal models of focal cerebral ischemia. This Guideline Document presents the European Stroke Organisation guidelines for the management of temperature in patients with acute ischemic stroke. METHODS: A multidisciplinary group identified related questions and developed its recommendations based on evidence from randomized controlled trials elaborating the Grading of Recommendations Assessment, Development, and Evaluation approach. This Guideline Document was reviewed within the European Stroke Organisation and externally and was approved by the European Stroke Organisation Guidelines Committee and the European Stroke Organisation Executive Committee. RESULTS: We found low-quality evidence, and therefore, we cannot make any recommendation for treating hyperthermia as a means to improve functional outcome and/or survival in patients with acute ischemic stroke and hyperthermia; moderate evidence to suggest against routine prevention of hyperthermia with antipyretics as a means to improve functional outcome and/or survival in patients with acute ischemic stroke and normothermia; very low-quality evidence to suggest against routine induction of hypothermia as a means to improve functional outcome and/or survival in patients with acute ischemic stroke. CONCLUSIONS: The currently available data about the management of temperature in patients with acute ischemic stroke are limited, and the strengths of the recommendations are therefore weak. We call for new randomized controlled trials as well as recruitment of eligible patients to ongoing randomized controlled trials to allow for better-informed recommendations in the future.
Resumo:
Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.
Resumo:
N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.
Resumo:
We develop an analytical approach to the susceptible-infected-susceptible epidemic model that allows us to unravel the true origin of the absence of an epidemic threshold in heterogeneous networks. We find that a delicate balance between the number of high degree nodes in the network and the topological distance between them dictates the existence or absence of such a threshold. In particular, small-world random networks with a degree distribution decaying slower than an exponential have a vanishing epidemic threshold in the thermodynamic limit.