860 resultados para Sugarcane diseases detection index
Resumo:
Cysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates. The synthesis and characterisation of a cell permeable ABP to report on intracellular CTSS activity is reported. The ABP, Z-PraVG-DMK, a modified peptidyl diazomethylketone, was based on the N-terminus of human cystatin motif (Leu-Val-Gly). The leucine residue was substituted for the alkyne-bearing proparcylglycine to facilitate conjugation of an azide-tagged reporter group using click chemistry, following irreversible inhibition of CTSS. When incubated with viable Human Embryonic Kidney 293 cells, Z-PraVG-DMK permitted disclosure of CTSS activity following cell lysis and rhodamine azide conjugation, by employing standard click chemistry protocols. Furthermore, the fluorescent tag facilitated direct detection of CTSS using in-gel fluorescent scanning, obviating the necessity for downstream biotin-streptavidin conjugation and detection procedures.
Resumo:
[EN]Previous studies have reported an association between a more pro-inflammatory diet profile and various chronic metabolic diseases. The Dietary Inflammatory Index (DII) was used to assess the inflammatory potential of nutrients and foods in the context of a dietary pattern. We prospectively examined the association between the DII and the incidence of cardiovascular disease (CVD: myocardial infarction, stroke or cardiovascular death) in the PREDIMED (Prevención con Dieta Mediterránea) study including 7216 high-risk participants.
Resumo:
BACKGROUND The presence of oral diseases and disorders can produce an impact on the quality of life of preschool children and their parents, affecting their oral health and well-being. However, socioeconomic factors could confound this association, but it has not been yet tested at this age. OBJECTIVE To assess the impact of early childhood caries (ECC), traumatic dental injuries (TDI) and malocclusions on the oral health-related quality of life (OHRQoL) of children between 2 and 5 years of age adjusted by socioeconomic factors. METHODS Parents of 260 children answered the Early Childhood Oral Health Impact Scale (ECOHIS) (six domains) on their perception of the children's OHRQoL and socioeconomic conditions. Two calibrated dentists (κ>0.8) examined the severity of ECC according to dmft index, and children were categorized into: 0=caries free; 1-5=low severity; ≥6=high severity. TDI and malocclusions were examined according to Andreasen & Andreasen (1994) classification and for the presence or absence of three anterior malocclusion traits (AMT), respectively. OHRQoL was measured through ECOHIS domain and total scores, and poisson regression was used to associate the different factors with the outcome. RESULTS In each domain and overall ECOHIS scores, the severity of ECC showed a negative impact on OHRQoL (P<0.001). TDI and AMT did not show a negative impact on OHRQoL nor in each domain (P>0.05). The increase in the child's age, higher household crowding, lower family income and mother working out of home were significantly associated with OHRQoL (P<0.05). The multivariate adjusted model showed that the high severity of ECC (RR=3.81; 95% CI=2.66, 5.46; P<0.001) was associated with greater negative impact on OHRQoL, while high family income was a protective factor for OHRQoL (RR=0.93; 95% CI=0.87, 0.99; P<0.001). CONCLUSIONS The severity of ECC and a lower family income had a negative impact on the OHRQoL of preschool children and their parents.
Resumo:
Fungal and oomycete pathogens are the causal agents of many important plant diseases. They affect crops that are staple foods for humans and livestock and are responsible for significant economic losses every year. This in turn generates a global social impact. Although fungi and oomycetes evolved separately, they share similar strategies and weaponry to attack plants. Here we review the challenges to global food security posed by these pathogens, current technologies used for detection and diagnostics, the latest understanding of pathogens' strategies to colonize plants, and current and future control measures. Genomic sequences of several important fungal and oomycete pathogens, as well as many crop plants, are now available and are helping to increase understanding of host–pathogen interactions. Recent developments in this field are discussed.
Resumo:
There are few professions in which visual acuity is as important as it is to radiologists. The diagnostic decision making process is composed of a number of events (detection or observation, interpretation and reporting), where the detection phase is subject to a number of physical and psychological phenomena that are critical to the process. Visual acuity is one phenomenon that has often been overlooked, and there is very little research assessing the impact of reduced visual acuity on diagnostic performance. The aim of this study was to investigate the impact of reduced visual acuity on an observer’s ability to detect simulated nodules in an anthropomorphic chest phantom.
Resumo:
Biochemical agents, including bacteria and toxins, are potentially dangerous and responsible for a wide variety of diseases. Reliable detection and characterization of small samples is necessary in order to reduce and eliminate their harmful consequences. Microcantilever sensors offer a potential alternative to the state of the art due to their small size, fast response time, and the ability to operate in air and liquid environments. At present, there are several technology limitations that inhibit application of microcantilever to biochemical detection and analysis, including difficulties in conducting temperature-sensitive experiments, material inadequacy resulting in insufficient cell capture, and poor selectivity of multiple analytes. This work aims to address several of these issues by introducing microcantilevers having integrated thermal functionality and by introducing nanocrystalline diamond as new material for microcantilevers. Microcantilevers are designed, fabricated, characterized, and used for capture and detection of cells and bacteria. The first microcantilever type described in this work is a silicon cantilever having highly uniform in-plane temperature distribution. The goal is to have 100 μm square uniformly heated area that can be used for thermal characterization of films as well as to conduct chemical reactions with small amounts of material. Fabricated cantilevers can reach above 300C while maintaining temperature uniformity of 2−4%. This is an improvement of over one order of magnitude over currently available cantilevers. The second microcantilever type is a doped single crystal silicon cantilever having a thin coating of ultrananocrystalline diamond (UNCD). The primary application of such a device is in biological testing, where diamond acts as a stable, electrically isolated reaction surface while silicon layer provides controlled heating with minimum variations in temperature. This work shows that composite cantilevers of this kind are an effective platform for temperature-sensitive biological experiments, such as heat lysing and polymerase chain reaction. The rapid heat-transfer of Si-UNCD cantilever compromised the membrane of NIH 3T3 fibroblast and lysed the cell nucleus within 30 seconds. Bacteria cells, Listeria monocytogenes V7, were shown to be captured with biotinylated heat-shock protein on UNCD surface and 90% of all viable cells exhibit membrane porosity due to high heat in 15 seconds. Lastly, a sensor made solely from UNCD diamond is fabricated with the intention of being used to detect the presence of biological species by means of an integrated piezoresistor or through frequency change monitoring. Since UNCD diamond has not been previously used in piezoresistive applications, temperature-denpendent piezoresistive coefficients and gage factors are determined first. The doped UNCD exhibits a significant piezoresistive effect with gauge factor of 7.53±0.32 and a piezoresistive coefficient of 8.12×10^−12 Pa^−1 at room temperature. The piezoresistive properties of UNCD are constant over the temperature range of 25−200C. 300 μm long cantilevers have the highest sensitivity of 0.186 m-Ohm/Ohm per μm of cantilever end deflection, which is approximately half that of similarly sized silicon cantilevers. UNCD cantilever arrays were fabricated consisting of four sixteen-cantilever arrays of length 20–90 μm in addition to an eight-cantilever array of length 120 μm. Laser doppler vibrometry (LDV) measured the cantilever resonant frequency, which ranged as 218 kHz−5.14 MHz in air and 73 kHz−3.68 MHz in water. The quality factor of the cantilever was 47−151 in air and 18−45 in water. The ability to measure frequencies of the cantilever arrays opens the possibility for detection of individual bacteria by monitoring frequency shift after cell capture.
Resumo:
Puccinia psidii (Myrtle rust) is an emerging pathogen that has a wide host range in the Myrtaceae family; it continues to show an increase in geographic range and is considered to be a significant threat to Myrtaceae plants worldwide. In this study, we describe the development and validation of three novel real-time polymerase reaction (qPCR) assays using ribosomal DNA and β-tubulin gene sequences to detect P. psidii. All qPCR assays were able to detect P. psidii DNA extracted from urediniospores and from infected plants, including asymptomatic leaf tissues. Depending on the gene target, qPCR was able to detect down to 0.011 pg of P. psidii DNA. The most optimum qPCR assay was shown to be highly specific, repeatable, and reproducible following testing using different qPCR reagents and real-time PCR platforms in different laboratories. In addition, a duplex qPCR assay was developed to allow coamplification of the cytochrome oxidase gene from host plants for use as an internal PCR control. The most optimum qPCR assay proved to be faster and more sensitive than the previously published nested PCR assay and will be particularly useful for high-throughput testing and to detect P. psidii at the early stages of infection, before the development of sporulating rust pustules.
Resumo:
The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classification of images in glaucomatous or not. We obtained results of 93% accuracy
Resumo:
The cotton industry in Australia funds biannual disease surveys conducted by plant pathologists. The objective of these surveys is to monitor the distribution and importance of key endemic pests and record the presence or absence of new or exotic diseases. Surveys have been conducted in Queensland since 2002/03, with surveillance undertaken by experienced plant pathologists. Monitoring of endemic diseases indicates the impact of farming practices on disease incidence and severity. The information collected gives direction to cotton disease research. Routine diagnostics has provided early detection of new disease problems which include 1) the identification of Nematospora coryli, a pathogenic yeast associated with seed and internal boll rot; and 2) Rotylenchulus reniformis, a plant-parasitic nematode. This finding established the need for an intensive survey of the Theodore district revealing that reniform was prevalent across the district at populations causing up to 30% yield loss. Surveys have identified an exotic defoliating strain (VCG 1A) and non-defoliating strains of Verticillium dahliae, which cause Verticillium wilt. An intensive study of the diversity of V. dahliae and the impact these strains have on cotton are underway. Results demonstrate the necessity of general multi-pest surveillance systems in broad acre agriculture in providing (1) an ongoing evaluation of current integrated disease management practices and (2) early detection for a suite of exotic pests and previously unknown pests.
Resumo:
Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.
Resumo:
Objetivo: Investigar o conhecimento e as práticas de biossegurança para hepatites virais de manicures/pedicures. Métodos: Estudo descritivo, transversal, quantitativo, através de questionário, utilizando instrumento de coleta de dados autoaplicado elaborado pelos pesquisadores, contendo dados da população (sexo, idade, tempo de atuação profissional) e conhecimentos básicos sobre transmissão de hepatite e práticas de biossegurança e higiene. Resultados: Entrevistaram-se 96 manicures/pedicures que atuam no Noroeste do Paraná. A maioria das profissionais já ouviu falar da patologia, mas somente 41,7% (n=40) fizeram o exame para detecção do vírus da hepatite; 38,39% (n=77) relataram como via de transmissão o sangue e 31,8% (n=63), a relação sexual. A reutilização de materiais descartáveis foi relatada por 60,4% (n=58); 55,2% (n=53) realizam esterilização de materiais e 27,1% (n=26) não a realizam. Não ficou evidenciada associação significativa entre tempo de profissão e as variáveis utilizadas: ouviu sobre hepatite (p=0,77025), realização de exames (p=0,035476), reutilização de materiais descartáveis (p=0,42691), lavagem de mãos (p=0,32876), uso de luvas descartáveis (p=0,33752) e esterilização de materiais (p=0,84443). Conclusão: As manicures entrevistadas não conhecem as exigências da Vigilância Sanitária no que concerne à prevenção da transmissão de hepatites.
Resumo:
It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. The first aim of this thesis was the development of the equations used to estimate the amount of FC that reaches the human colon and is fermented fully to SCFA by the colonic bacteria. Therefore, several studies were examined for evidence to determine the different percentages of each type of NDCs that should be included in the final model, based on how much NDCs entered the colon intact and also to what extent they were fermented to SCFA in vivo. Our model equations are FC-DF or NSP$ 1: 100 % Soluble + 10 % insoluble + 100 % NDOs¥ + 5 % TS** FC-DF or NSP 2: 100 % Soluble + 50 % insoluble + 100 % NDOs + 5 % TS FC-DF* or NSP 3: 100 % Soluble + 10 % insoluble + 100 % NDOs + 10 % TS FC-DF or NSP 4: 100 % Soluble + 50 % insoluble + 100 % NDOs + 10 % TS *DF: Dietary fibre; **TS: Total starch; $NSP: non-starch polysaccharide; ¥NDOs: non-digestible oligosaccharide The second study of this thesis aimed to examine all four predicted FC-DF and FC-NSP equations developed, to estimate FC from dietary records against urinary colonic NDCs fermentation biomarkers. The main finding of a cross-sectional comparison of habitual diet with urinary excretion of SCFA products, showed weak but significant correlation between the 24 h urinary excretion of SCFA and acetate with the estimated FC-DF 4 and FC-NSP 4 when considering all of the study participants (n = 122). Similar correlations were observed with the data for valid participants (n = 78). It was also observed that FC-DF and FC-NSP had positive correlations with 24 h urinary acetate and SCFA compared with DF and NSP alone. Hence, it could be hypothesised that using the developed index to estimate FC in the diet form dietary records, might predict SCFA production in the colon in vivo in humans. The next study in this thesis aimed to validate the FC equations developed using in vitro models of small intestinal digestion and human colon fermentation. The main findings in these in vitro studies were that there were several strong agreements between the amounts of SCFA produced after actual in vitro fermentation of single fibre and different mixtures of NDCs, and those predicted by the estimated FC from our developed equation FC-DF 4. These results which demonstrated a strong relationship between SCFA production in vitro from a range of fermentations of single fibres and mixtures of NDCs and that from the predicted FC equation, support the use of the FC equation for estimation of FC from dietary records. Therefore, we can conclude that the newly developed predicted equations have been deemed a valid and practical tool to assess SCFA productions for in vitro fermentation.
Resumo:
Background Little information is available on the prevalence of depression in Malawi in primary health care settings and yet there is increased number of cases of depression presenting at tertiary level in severe form. Aim The aim of the study was to determine the prevalence of depression among patients and its detection by health care workers at a primary health care clinic in Zomba. Methods A cross-sectional survey was done among patients attending outpatient department at Matawale Health Centre, in Zomba from 1st July 2009 through to 31st July 2009. A total of 350 adults were randomly selected using systematic sampling. The “Self Reporting Questionnaire”, a questionnaire measuring social demographic factors and the Structured Clinical Interview for DSM-IV Axis I disorders Non-Patient Version (SCID-NP) were administered verbally to the participants. Findings The prevalence of depression among the patients attending the outpatients department was found to be 30.3% while detection rate of depression by clinician was 0%. Conclusion The results revealed the magnitude of depression which is prevalent in the primary health care clinic that goes undiagnosed and unmanaged. It is therefore recommended that primary health care providers do thorough assessments to address common mental disorders especially depression and they should be educated to recognise and manage depression appropriately at primary care level.