958 resultados para Spatio-temporal variations
Resumo:
Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS) and nonsynonimous (dN) substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS > 1) and 8 under significant purifying selection (dN/dS < 1). We found several polymorphic amino acid coding sites in the envelope (15), NS1 (17), NS2A (11), and NS5 (24) genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak.
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.
Resumo:
Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.
Resumo:
Im Rahmen dieser Arbeit wurden transgene Mausmodelle hergestellt, die eine weitere Aufklärung der Rolle des Transkriptionsfaktors Pax6 bei der Wanderung von Nervenzellen ermöglichen, sowie ein Kultursystem zur Darstellung embryonaler Wanderungen außerhalb des Mutterleibs entwickelt.Bei der YAC-transgenen Mäuselinie PhPax6-taulacZ wird das Reportergen taulacZ unter der Kontrolle des Pax6-Promotors exprimiert. Dadurch ist dort, wo Pax6 im Zellkern vorliegt, der Rest der Zelle über seine gesamte Ausdehnung mit der vom taulacZ-Transgen kodierten tau-b-Galactosidase markiert. Das räumlich-zeitliche Expressionsmuster von Pax6 und dem Transgen taulacZ wurde detailliert untersucht. Dabei wurde eine hohe Übereinstimmung festgestellt. Basierend auf der Darstellung der Zellen in ihrer gesamten Ausdehnung, die durch das taulacZ-Transgen erstmals möglich ist, wurde eine Klassifizierung Pax6-positiver Zelltypen vorgenommen. Zunächst wird Pax6 in Neuroepithelzellen, später in radialen Gliazellen exprimiert.Mit der zweiten transgenen Mäuselinie, PhPax6-tTA, wurde ein Werkzeug hergestellt, das die gezielte und hoch spezifische Expression von beliebigen Transgenen in Pax6-exprimierenden Zellen ermöglicht. In Pax6-positive Zellen der Medulla wurde das Grün Fluoreszierende Protein (GFP) eingeführt und das Wanderungsverhalten in vitro über mehrere Tage dargestellt. Erstmals können mit dieser Linie beliebige Expressionskonstrukte gezielt, hocheffizient und schnell in wandernde Neurone eingebracht werden, ohne störende Hinter-grundexpression in anderen Zellen.
Resumo:
Die Enzyme des Carotinoidstoffwechsels spalten Provitamin A-Carotinoide in wichtige Retinoide (z.B. Vitamin A, Retinsäure), die Organismen während der Entwicklung und in visuellen Systemen benötigen. Die vorliegende Arbeit präsentiert erstmalig eine Carotinoxygenase (BCO) aus Schwämmen (S. domuncula), die einzigartig im Tierreich ist und nur einen orthologen Vertreter in Pflanzen (Crocus sativus) wieder findet. Das Enzym ist eine 7,8(7’,8’)-Carotinoxygenase, die C40-Carotinoide zu einem C10-Apocarotinoid und 8’-Apocarotinal spaltet. Mittels HPLC wurden sowohl die Primärspaltprodukte von β-Carotin, Lykopin und Zeaxanthin als auch das für alle identische innere Kettenstück (Crocetin) bei Doppelspaltung nachgewiesen. Der Nachweis der BCO-Transkripte (unter anderem in-situ) belegt eine Beteiligung des Enzyms während Entwicklungsprozessen und offenbart sowohl eine streng räumlich-zeitliche als auch eine über Rückkopplungsprozesse gesteuerte Regulierung des Enzyms. Ein weiteres hier identifiziertes Gen ähnelt einer bakteriellen Apocarotinoidoxygenase (ACO), welche das 8’-Apocarotinal der BCO erneut spaltet und so Retinal generiert. Letzteres dient als Chromophor zahlreicher visueller Systeme und kann über Enzyme des Retinoidstoffwechsels entweder gespeichert, oder in das wichtige Morphogen Retinsäure umgesetzt werden. Hier werden zwei potentielle Enzyme vorgestellt, die an dieser Interkonversion Retinal/Retinol (Speicher) beteiligt sein könnten als auch eines, das evtl. Retinal zu Retinsäure umsetzt. Die hier vorgestellten Ergebnisse unterstützen die Hypothese, dass Retinsäure kein autapomorphes Morphogen der Chordaten darstellt.
Resumo:
The interaction between atmosphere–land–ocean–biosphere systems plays a prominent role on the atmospheric dynamics and on the convective rainfall distribution over the West Africa monsoon area during the boreal summer. In particular, the initialization of convective systems in the Sub – Sahelian region has been directly linked to soil moisture heterogeneities identified as the major triggering, development and propagation of convective systems. The present study aims at investigating African monsoon large scale convective dynamics and rainfall diurnal cycle through an exploration of the hypothesis behind the mechanisms of a monsoon phenomenon as an emergence of a collective dynamics of many propagating convective systems. Such hypothesis is based on the existence of an internal self – regulation mechanism among the various components. To achieve these results a multiple analysis was performed based on remote sensed rainfall dataset, and global and regional modelling data for a period of 5 seasons: 2004 - 2008. Satellite rainfall data and convective occurrence variability were studied for assessing typical spatio – temporal signatures and characteristics with an emphasis to the diurnal cycle footprint. A global model and regional model simulation datasets, specifically developed for this analysis and based on Regional Atmospheric Modelling System – RAMS, have been analysed. Results from numerical model datasets highlight the evidence of a synchronization between the destabilization of the convective boundary layer and rainfall occurrence due to the solar radiation forcing through the latent heat release. This supports the conclusion that the studied interacting systems are associated with a process of mutual adjustment of rhythms. Furthermore, this rainfall internal coherence was studied in relation to the West African Heat Low pressure system, which has a prominent role in the large scale summer variability over the Mediterranean area since it is acting as one of dynamic link between sub tropical and midlatitudes variability.
Resumo:
We have developed a method for locating sources of volcanic tremor and applied it to a dataset recorded on Stromboli volcano before and after the onset of the February 27th 2007 effusive eruption. Volcanic tremor has attracted considerable attention by seismologists because of its potential value as a tool for forecasting eruptions and for better understanding the physical processes that occur inside active volcanoes. Commonly used methods to locate volcanic tremor sources are: 1) array techniques, 2) semblance based methods, 3) calculation of wave field amplitude. We have choosen the third approach, using a quantitative modeling of the seismic wavefield. For this purpose, we have calculated the Green Functions (GF) in the frequency domain with the Finite Element Method (FEM). We have used this method because it is well suited to solve elliptic problems, as the elastodynamics in the Fourier domain. The volcanic tremor source is located by determining the source function over a regular grid of points. The best fit point is choosen as the tremor source location. The source inversion is performed in the frequency domain, using only the wavefield amplitudes. We illustrate the method and its validation over a synthetic dataset. We show some preliminary results on the Stromboli dataset, evidencing temporal variations of the volcanic tremor sources.
Resumo:
L’obiettivo di questo lavoro di tesi è di ottenere un’analisi climatica giornaliera ad alta risoluzione della precipitazione sul territorio del nord Italia realizzata con tecniche di controllo statistico, di analisi e di strumenti di descrizione dei risultati presentati nella recente letteratura. A tal fine, sono stati utilizzati i dati dell’Archivio ARCIS. In seguito alle fasi di controllo qualità, omogeneità e sincronicità i dati sono stati utilizzati per realizzare un’analisi giornaliera su grigliato regolare a 10 km di risoluzione utile alla rappresentazione della variabilità spazio-temporale della precipitazione sul Nord Italia per il periodo 1961-2005. I risultati di tale analisi mettono in evidenza dei valori medi di precipitazione annuale abbastanza intensi sulla parte centrale dell’arco Alpino, con massimi (oltre 2000 mm) sull’estremità orientale e sull’Appennino Ligure. Valori minimi (500 – 600 mm) sono osservati lungo le aree prospicienti il fiume Po, in Val d’Aosta ed in Alto Adige. La corrispondente analisi del trend temporale indica la presenza di lievi cali statisticamente significativi solo in aree limitate del territorio. In coerenza con questi risultati, la variazione nel tempo della precipitazione annuale mediata su tutto il territorio mette in evidenza un’intensa variabilità decennale, ma solo una lieve flessione lineare sull’intero periodo. Il numero annuo di giorni piovosi ed il 90° percentile della precipitazione giornaliera presentano invece trend lineari un po’ più pronunciati. In particolare, sul periodo considerato si nota un calo del numero di giorni piovosi su gran parte del territorio e solo su alcune aree del territorio un aumento dell’intensità del 90° percentile, sia a scala annuale che stagionale. Nell’ultima parte di questo lavoro è stato realizzato uno studio della relazione fra la forzante climatica e l’evoluzione della morfologia dell’Appennino Emiliano-Romagnolo. I risultati mostrano che a parità di quota, di pendenza e di litologia, la franosità è influenzata dalle precipitazioni.
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.
Resumo:
Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.
Resumo:
This study deals with the function and regulation of programmed cell death, or apoptosis, in the development of the embryonic central nervous system of Drosophila melanogaster. The first part provides a description of apoptosis-deficient embryos, which showed that preventing apoptosis does not cause gross morphological defects in the CNS, as it appears well organized despite the presence of too many cells. An analysis of the incidence and pattern of apoptosis over the course of development discloses a partly very orderly pattern suggesting tight spatio-temporal control, but also reveals random apoptotic cells, which suggests a certain amount of plasticity in the embryo. This analysis also allowed precise identification of some of the dying neural cells in the embryo, and establishment of single cell models for studying regulation of segment-specific apoptosis in the embryonic CNS. In the second part of the work, further investigations into mechanisms controlling segment-specific apoptosis revealed the involvement of two Hox genes, Antennapedia (Antp) and Ultrabithorax (Ubx), in this process. Hox genes control the formation of segment-specific structures in their domains of expression, but also regulate organ and tissue morphogenesis. The study presented here shows that Antp and Ubx play antagonistic roles in motoneuron survival in the embryo. Ubx expression in the CNS is strongly upregulated at a late point in development, when most cells have begun to differentiate. This upregulation shortly precedes Ubx-dependent, segment-specific apoptosis of two differentiated motoneurons. It could further be demonstrated that Antp is required for proper development of the NB7-3 lineage and for survival of the NB7-3 motoneuron in the anterior thoracic segments. In segments where Antp and Ubx expression overlaps, Ubx counteracts the anti-apoptotic function of Antp, resulting in cell death. Thus, these two Hox genes play opposing roles in the survival of differentiated neurons in the late developing nervous system. They thereby contribute to establishment of correct connections between outward-projecting neurons and their targets, which is crucial for the assembly of functional neural circuits, as these have to fulfill region-specific locomotion and sensory requirements along the antero-posterior body axis.
Resumo:
Die Frage wie großmotorische Bewegungen gelernt werden beschäftigt nicht nur Sportler, Trainer und Sportlehrer sondern auch Ärzte und Physiotherapeuten. Die sportwissenschaftlichen Teildisziplinen Bewegungs- und Trainingswissenschaft versuchen diese Frage sowohl im Sinne der Grundlagenforschung (Wie funktioniert Bewegungslernen?) als auch hinsichtlich der praktischen Konsequenzen (Wie lehrt man Bewegungen?) zu beantworten. Innerhalb dieser Themenfelder existieren Modelle, die Bewegungslernen als gezielte und extern unterstützte Ausbildung zentralnervöser Bewegungsprogramme verstehen und solche, die Lernen als Selbstorganisationsprozess interpretieren. Letzteren ist das Differenzielle Lernen und Lehren (Schöllhorn, 1999) zuzuordnen, das die Notwendigkeit betont, Bewegungen durch die Steigerung der Variationen während der Aneignungsphase zu lernen und zu lehren. Durch eine Vielzahl an Variationen, so die Modellannahme, findet der Lernende ohne externe Vorgaben selbstorganisiert ein individuelles situatives Optimum. Die vorliegende Arbeit untersucht, welchen Einfluss Variationen verschiedener Art und Größe auf die Lern- und Aneignungsleistung großmotorischer Bewegungen haben und in wie fern personenübergreifende Optima existieren. In zwei Experimenten wird der Einfluss von räumlichen (Bewegungsausführung, Bewegungsergebnis) und zeitlichen Variationen (zeitliche Verteilung der Trainingsreize) auf die Aneignungs- und Lernleistung großmotorischer sportlicher Bewegungen am Beispiel zweier technischer Grundfertigkeiten des Hallenhockeys untersucht. Die Ergebnisse der Experimente stützen die bisherige Befundlage zum Differenziellen Lernen und Lehren, wonach eine Zunahme an Variation in der Aneignungsphase zu größeren Aneignungs- und Lernleistungen führt. Zusätzlich wird die Annahme bestätigt, dass ein Zusammenhang von Variationsbereich und Lernrate in Form eines Optimaltrends vorliegt. Neu sind die Hinweise auf die Dynamik von motorischen Lernprozessen (Experiment 1). Hier scheinen individuelle Faktoren (z. B. die Lernbiografie) als auch die Phase im Lernprozess (Aneignung, Lernen) Einfluss zu haben auf den Umfang und die Struktur eines für die optimale Adaptation notwendigen Variationsbereichs. Darüber hinaus weisen die Befunde auf verschiedene Aneignungs- und Lerneffekte aufgrund alleiniger Variation der zeitlichen Verteilung bei ansonsten gleichen Trainingsreizen hin (Experiment 2). Für zukünftige Forschungsarbeiten zum Erlernen großmotorischer Bewegungen und für die sportliche Praxis dürfte es daher erkenntnisreich sein, die Historie der intrinsischen Dynamik der lernenden Systeme stärker zu berücksichtigen. Neben Fragestellungen für die Grundlagenforschung zum (Bewegungs-)Lernen ließen sich hieraus unmittelbar praxisrelevante Erkenntnisse darüber ableiten, wie Bewegungslernprozesse mittels verschiedener Variationsbereiche strukturiert und gesteuert werden könnten.
Resumo:
The spatio-temporal distribution of megistobenthic crustacean assemblages from the Antalya Gulf, located in the Levantine Sea is described. In order to provide a comprehensive overview of the spatio-temporal patterns of the crustacean community, 3 transect including depth of 10, 25, 75, 125 and 200 m, were studied between 2014 and 2015 to investigate their association with a set of environmental parameters in representative months of each season (spring, summer, autumn and winter). For its economic importance in Levantine waters, a focus analysis of deep-water rose shrimp Parapenaeus longirostris (Lucas, 1846) was done, to investigate the length frequency composition of the population of the Antalya Gulf. A total of 58 crustacean species were encountered in the study area, of these species identified, 18 species were recognized as alien species in the Mediterranean Sea. Throughout the year the most frequent species of the study were the hermit crab Pagurus prideaux (Leach, 1815) and Parapenaeus longirostris (Lucas, 1846) followed by the Indo-Pacific swimming crab Charybdis longicollis (Leene, 1938) and by the invasive shrimp Marsupenaeus japonicus (Spence Bate, 1888). Few species contributing to a high amount to the total biomass were found throughout the year. These species were Charybdis longicollis and Parapenaeus longirostris. Stations of the study area showed similar values of diversity indices of benthic crustacean community among the three transect. The highest values of faunistic indices were detected in autumn and winter (October and February), and also varied along the depth gradient, with the highest values found between 25 and 75 meters. The multivariate analyses conducted on the abundance data point out major differences between depths and between seasons. Therefore, according to cluster analysis and ordination over abundance and biomass, three main crustacean assemblages were detected: the first corresponding to shallow bottoms (10, 25 meters), the second corresponding to intermediate waters (75 meters) and the last to deeper waters (125, 200 meters). Depth was the main factor governing the distribution of megistobenthic crustacean in the area. Besides the depth, the structure of the sediment is the most important factor in determining the crustacean assemblage. Therefore, all factors governing the crustacean distribution were found to be related to the bottom depth. The population of Parapenaeus longirostris in the Antalya Gulf showed significant differences in depth. It was found that females dominated the population of the study area (65.11%), and were significantly larger than males for each cohort identified. The size-weight relationships revealed a slight negative allometry in growth, a bit more pronounced in females than in males.
Resumo:
Stimulation of human epileptic tissue can induce rhythmic, self-terminating responses on the EEG or ECoG. These responses play a potentially important role in localising tissue involved in the generation of seizure activity, yet the underlying mechanisms are unknown. However, in vitro evidence suggests that self-terminating oscillations in nervous tissue are underpinned by non-trivial spatio-temporal dynamics in an excitable medium. In this study, we investigate this hypothesis in spatial extensions to a neural mass model for epileptiform dynamics. We demonstrate that spatial extensions to this model in one and two dimensions display propagating travelling waves but also more complex transient dynamics in response to local perturbations. The neural mass formulation with local excitatory and inhibitory circuits, allows the direct incorporation of spatially distributed, functional heterogeneities into the model. We show that such heterogeneities can lead to prolonged reverberating responses to a single pulse perturbation, depending upon the location at which the stimulus is delivered. This leads to the hypothesis that prolonged rhythmic responses to local stimulation in epileptogenic tissue result from repeated self-excitation of regions of tissue with diminished inhibitory capabilities. Combined with previous models of the dynamics of focal seizures this macroscopic framework is a first step towards an explicit spatial formulation of the concept of the epileptogenic zone. Ultimately, an improved understanding of the pathophysiologic mechanisms of the epileptogenic zone will help to improve diagnostic and therapeutic measures for treating epilepsy.