990 resultados para Powe, Alex
Resumo:
Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
运用反应器理论研究了一种新型的复合垂直流构建湿地系统 (IVCW )的水流流态 ,由示踪剂试验得到水流停留时间分布 (RTD) ,从而确定了IVCW在水力负荷为 2 0 0~ 80 0mm/d时 ,停留时间为 1 9~ 3 5h ,并由RTD曲线的特征值确定IVCW的水流流态介于理想推流与完全混合流之间 ,同时应用离散流模型 ,不仅较好地模拟了IVCW的实际水流流态 ,还得到了水流的Peclect准数在 1 1~ 1 9之间 .通过有植物与无植物系统的对照发现植物根系有利于IVCW的水流流态接近理想推流状
Resumo:
提出一种新型的复合垂直流湿地系统(IVCW),并对其反应动力学和系统的实际流态进行了研究.经过中试的运行试验,得到了系统对COD去除的反应速率方程,由示踪剂试验确定了系统中水流的停留时间分布(RTD),提出RTD的不同是湿地处理效率差异的主要原因,进而运用串联反应器模型和离散流模型两种非理想流态模型,模拟IVCW的实际水流流态,经过比较发现离散流模型模拟的效果较好.
Resumo:
对一种新型的垂直流人工湿地系统的水流特性进行了研究 .考察了系统的运行状况及介质中滞留区的分布范围 ,并且运用化学工程中反应器理论 ,采用示踪剂试验的方法得到了垂直流人工湿地系统的停留时间分布与污水的实际停留时间 .根据水流停留时间分布函数对系统实际液流流态进行了数学模拟 ,提出二级串联的理想完全混合反应器 (CSTR)模型能够较好地模拟垂直流人工湿地系统中水流的流动形态
Resumo:
通过在污水中加入示踪剂 ,研究了人工湿地的水力学特点及其对污水净化效果的影响规律 .结果表明 ,影响水力学各特点的主要原因是湿地植物根系所造成的物理学和生物学上的效应 .水力学各特点与污水净化效果之间存在着密切关系 :出水快、出水量大的系统具有较好的净化效果 ;除无植物系统外 ,停留时间较长的系统有较好的净化效果 ;容水体积大的系统净化效果也较好 ;水力负荷则主要通过影响其他各水力学特点而影响净化效果 .结果表明 ,对水力学特点的优化将极大地促进污水净化效果的提高
Resumo:
The optical properties and the band lineup in GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) technique were investigated. It was found that the low-temperature PL is dominated by the intrinsic localized exciton emission. By fitting the experimental datawith a simple calculation, band offset of the GaN0.015As0.985/GaAs heterostructure was estimated. Moreover, DeltaE(c), the discontinuity of the conduction band was found to be a nonlinear function of the nitrogen composition (chi) and the average variation of DeltaE(c) is about 0. 110eV per % N, such smaller than that reported on the literature to (0.156 similar to 0.175 eV/N %). In addition, Qc has little change whtn N composition increares, with an experimential relation of QC approximate tox(0.25). The band bowing coefficient (b) was also studied in this paper. The measured band bowing coefficient shows a strong function of chi, giving an experimental support to the theoretic calculation of Wei Su-Huai and Zunger Alex (1996).
Resumo:
Gaseous and particulate semi volatile carbonyls have been measured in urban air using an annular denuder sampling system. Three dicarbonyls, five aliphatic aldehydes and two hydroxy carbonyls were observed. Concentrations of other biogenic and anthropogenic volatile organic compounds (VOCs), SO2, CO, NO2 and particle concentration were also measured. Estimated gas-aerosol equilibrium constants for the carbonyls showed an inverse correlation with the concentrations of anthropogenic pollutants such as benzene, isopentane and SO2. This suggests that the increase in the fraction of non-polar anthropogenic particles in the atmosphere could change the average property of the ambient aerosols and drive the gas particle equilibrium of the carbonyls to the gas phase. This trend is uncommon in remote forest air. In this study, we examined the factors controlling the equilibrium in the polluted atmosphere and show that there is a difference in gas-aerosol partition between polluted and clean air.
Resumo:
Through the detailed analyses of Mesozoic tectono-stratigraphy and basin formation dynamic mechanism and the styles of different units in the western margin of Ordos Basin(Abbreviated to "the western margin"), while some issues of the pre-Mesozoic in the western margin and central part of Ordos Basin also be discussed, the main views and conclusion as follows: 1. There are three types of depositional systems which are related with syndepositional tectonic actions and different tectonic prototype basins, including: alluvial fan systems, river system (braided river system and sinuosity river system), lacustrine-river delta system and fan delta system. They have complex constitutions of genetic facies. For the tectonic sequence VI, the fan sediments finning upper in the north-western margin and coarse upper in the south-western margin respectively. 2. In order to light the relationship between basin basement subsidence rate and sediment supply and the superposed styles, five categories of depositional systems tracts in different prototype basins were defined: aggrading and transgressive systems tracts during early subsidence stage, regressive and aggrading systems tracts during rapid subsidence, upper transgessive systems tracts during later subsidence stage. Different filling characteristics and related tectonic actions in different stages in Mesozoic period were discussed. 3. In order to determined the tectonic events of the provenance zones and provenance strata corresponding to basins sediments, according the clastics dispersal style and chemical analyses results of sediments in different areas, the provenance characteristics have been described. The collision stage between the "Mongolia block" and the north-China block may be the late permian; The sediments of Mesozoic strata in the north-western margin is mainly from the Alex blocks and north-Qilian Paleozoic orogeny, while the south-western margin from Qinling orogeny. The volcanic debris in the Yan'an Formation may be from the arc of the north margin of north-China block, although more study needed for the origin of the debris. The provenance of the Cretaceous may be from the early orogeny and the metamorphic basement of Longshan group. 4. The subsidence curve and subsidence rate and sedimentary rate in different units have been analyzed. For different prototype basin, the form of the subsidence curves are different. The subsidence of the basins are related with the orogeny of the basins.The beginning age of the foreland basin may be the middle Triassic. The change of basement subsidence show the migration of the foredeep and forebulge into the basin. The present appearance of the Ordos basin may be formed at the late stage of Cretaceous, not formed at the late Jurassic. 5. The structure mode of the west margin is very complex. Structure transfer in different fold-thrust units has been divided into three types: transfer faults, transition structures and intersected form. The theoretic explanations also have been given for the origin and the forming mechanism. The unique structure form of Hengshanpu is vergent west different from the east vergence of most thrust faults, the mechanism of which has been explained. 6. In Triassic period, the He1anshan basin is extensional basin while the Hengshanbu is "forland", and the possible mechanism of the seemingly incompatible structures has been explained. First time, the thesis integrate the Jurassic—early Cretaceous basins of west margin with the Hexi corridor basins and explain the unitive forming mechanism. The model thinks the lateral extrusion is the main mechanism of the Hexi corridor and west margin basins, meanwhile, the deep elements and basement characters of the basins. Also, for the first time, we determine the age of the basalt in Helanshan area as the Cretaceous period, the age matching with the forming of the Cretaceous basins and as the main factor of the coal metamorphism in the Helanshan area. 7. The Neoprotterozoic aulacogen is not the continuation of the Mesozoic aulacogen, while it is another new rift stage. In the Paleozoic, the Liupanshan—southern Helanshan area is part of the back-arc basins of north Qilian ocean. 8. The Helanshan "alacogen" is connected with the north margin of north China block, not end at the north of Zhouzishan area like "appendices". Also, I think the upper Devonian basin as the beginning stage of the extensional early Carboniferous basins, not as a part of the foreland basins of Silurian period, not the collision rift. 9. The controlling factor of the difference of the deformation styles of the north-west margin and the south-west margin is the difference of the basements and adjacent tectonic units of the two parts.
Resumo:
A eficiência econômica e os impactos sociais e ambientais do atual modelo de agricultura têm sido questionados em muitos aspectos. Sistemas silvipastoris (SSPs) são sistemas de produção nos quais forrageiras e/ou animais e árvores são cultivados, simultânea ou sequencialmente, na mesma unidade de área. A ideia de integrar animais nas atividades florestais já existe em várias partes do mundo, principalmente na Ásia, África, América Central e alguns países da América Latina. Estudos demonstraram a lucratividade dos SSPs por meio da comparação de sistemas de monocultura de floresta, monocultura de pastagens e SSP com 250 e 416 árvores por hectare, e esse sistema apresentou as maiores taxas internas de retorno (TIR) do investimento efetuado, superando a renda líquida obtida nas monoculturas. Além dos benefícios econômicos, esses sistemas trazem benefícios ambientais, por meio da conservação do solo, alívio à pressão em remanescentes vegetais, melhoria nos ciclos de nutrientes, como C e N, alteração microclimáticas com amenização dos extremos, estagnação de processos erosivos, e também sociais pelo aumento da geração de emprego e distribuição da renda das propriedades rurais. De toda a gama de incrementos gerados pelos SSPs, os maiores beneficiados são, de fato, os animais que, quando criados em consórcio com árvores, gozam de melhor alimentação, mais proteção a intempéries climáticas e amenização das temperaturas, sofrendo assim menor estresse e produzindo produtos de melhor qualidade. Desta forma, sempre que tais sistemas forem bem delineados, desde a escolha das espécies até o modelo de implantação, sempre haverá grande chance de sucesso e consequente melhorias para a comunidade envolvida.
Resumo:
O objetivo deste estudo foi mapear o uso e cobertura das terras do Município de Araras na escala 1:50.000 com base em imagem do satélite CBERS do ano de 2007; Geomorfologia; Uso e cobertura das terras;
Resumo:
An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.
Resumo:
Locating hexagonal and cubic phases in boron nitride using wavelength-selective optically detected x-ray absorption spectroscopy, D.A. Evans, A.R. Vearey-Roberts, N.R.J. Poolton Appl Phys Lett 89, (2006) 161107
Resumo:
Modification of GaAs Schottky diodes by thin organic interlayers, A.R. Vearey-Roberts and D.A. Evans, Appl. Phys. Lett. 86, 072105 (2005)