949 resultados para Polymeric sponges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon substrates coated with a bromide-terminated silane are transformed into highly reactive, cyclopentadiene covered analogues. These surfaces undergo rapid cycloaddition reactions with various dienophile-capped polymers. Mild heating of the substrates causes the retro-Diels-Alder reaction to occur, thus reforming the reactive cyclopentadiene surface, generating an efficiently switchable surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n (1) and [Cs(C6H6NO3S)]n (2) and have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving a number of bidentate chelate sulfonate-O,O’-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title complex [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. Intra-unit O-H...O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There remains a substantial shortfall in treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient, has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors; which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However cost and potential complications associated with growth factors means controlled release is an important consideration in the design of new bone tissue engineering strategies. This review will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric graphitic carbon nitride materials have attracted increasing attention in recent years owning to their potential applications in energy conversion, environment protection, and so on. Here, from first-principles calculations, we report the electronic structure modification of graphitic carbon nitride (g-C3N4) in response to carbon doping. We showed that each dopant atom can induce a local magnetic moment of 1.0 μB in non-magnetic g-C3N4. At the doping concentration of 1/14, the local magnetic moments of the most stable doping configuration which has the dopant atom at the center of heptazine unit prefer to align in a parallel way leading to long-range ferromagnetic (FM) ordering. When the joint N atom is replaced by C atom, the system favors an antiferromagnetic (AFM) ordering at unstrained state, but can be tuned to ferromagnetism (FM) by applying biaxial tensile strain. More interestingly, the FM state of the strained system is half-metallic with abundant states at the Fermi level in one spin channel and a band gap of 1.82 eV in another spin channel. The Curie temperature (Tc) was also evaluated using a mean-field theory and Monte Carlo simulations within the Ising model. Such tunable electron spin-polarization and ferromagnetism are quite promising for the applications of graphitic carbon nitride in spintronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactions of pyrrole and thiophene monomers in copper-exchanged mordenite have been investigated using EPR and UV–VIS absorption spectroscopy. The EPR spectra show a decrease in the intensity of the Cu2+ signal and the appearance of a radical signal due to the formation of oxidatively coupled oligomeric and/or polymeric species in the zeolite host. The reaction ceases when ca. 50% of the copper has reacted and differences in the form of the residual Cu2+ signal between the thiophene and pyrrole reactions suggest a greater degree of penetration of the reaction into the zeolite host for pyrrole, in agreement with previous XPS measurements. The EPR signal intensities show that the average length of the polymer chain that is associated with each radical centre is 15–20 and 5–7 monomer units for polypyrrole and polythiophene, respectively. The widths of the EPR signals suggest that these are at least partly due to small oligomers. The UV–VIS absorption spectra of the thiophene system show bands in three main regions: 2.8–3.0 eV (A), 2.3 eV (B) and 1.6–1.9 eV (D, E, F). Bands A and D–F occur in regions which have previously been observed for small oligomers, 4–6 monomer units in length. Band B is assigned to longer chain polythiophene molecules. We therefore conclude that the reaction between thiophene and copper-loaded mordenite produces a mixture of short oligomers together with some long chain polythiophene. The UV–VIS spectra of the pyrrole system show bands in the regions 3.6 eV (A), 2.7–3.0 eV (B, C) and 1.5–1.9 eV (D, F). Assignments of these bands are less certain than for the thiophene case because of the lack of literature data on the spectra of pyrrole oligomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The encapsulation and release of bioactive molecules from polymeric vehicles represents the holy grail of drug and growth factor delivery therapies, whereby sustained and controlled release is crucial in eliciting a positive therapeutic effect. To this end, electrospraying is rapidly emerging as a popular technology for the production of polymeric particles containing bioactive molecules. Compared with traditional emulsion fabrication techniques, electrospraying has the potential to reduce denaturation of protein drugs and affords tighter regulation over particle size distribution and morphology. In this article, we review the importance of the electrospraying parameters that enable reproducible tailoring of the particles' physical and in vitro drug release characteristics, along with discussion of existing in vivo data. Controlled morphology and monodispersity of particles can be achieved with electrospraying, with high encapsulation efficiencies and without unfavorable denaturation of bioactive molecules throughout the process. Finally, the combination of electrospraying with electrospun scaffolds, with an emphasis on tissue regeneration is reviewed, depicting a technique in its relative infancy but holding great promise for the future of regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun scaffolds manufactured using conventional electrospinning configurations have an intrinsic thickness limitation, due to a charge build-up at the collector. To overcome this limitation, an electrostatic lens has been developed that, at the same relative rate of deposition, focuses the polymer jet onto a smaller area of the collector, resulting in the fabrication of thick scaffolds within a shorter period of time. We also observed that a longer deposition time (up to 13 h, without the intervention of the operator) could be achieved when the electrostatic lens was utilised, compared to 9–10 h with a conventional processing set-up and also showed that fibre fusion was less likely to occur in the modified method. This had a significant impact on the mechanical properties, as the scaffolds obtained with the conventional process had a higher elastic modulus and ultimate stress and strain at short times. However, as the thickness of the scaffolds produced by the conventional electrospinning process increased, a 3-fold decrease in the mechanical properties was observed. This was in contrast to the modified method, which showed a continual increase in mechanical properties, with the properties of the scaffold finally having similar mechanical properties to the scaffolds obtained via the conventional process at longer times. This “focusing” device thus enabled the fabrication of thicker 3-dimensional electrospun scaffolds (of thicknesses up to 3.5 mm), representing an important step towards the production of scaffolds for tissue engineering large defect sites in a multitude of tissues.

Relevância:

10.00% 10.00%

Publicador: