Spin-polarization and ferromagnetism of graphitic carbon nitride materials


Autoria(s): Zhang, Xiaoming; Zhao, Mingwen; Wang, Aizhu; Wang, Xiaopeng; Du, Aijun
Data(s)

01/08/2013

Resumo

Polymeric graphitic carbon nitride materials have attracted increasing attention in recent years owning to their potential applications in energy conversion, environment protection, and so on. Here, from first-principles calculations, we report the electronic structure modification of graphitic carbon nitride (g-C3N4) in response to carbon doping. We showed that each dopant atom can induce a local magnetic moment of 1.0 μB in non-magnetic g-C3N4. At the doping concentration of 1/14, the local magnetic moments of the most stable doping configuration which has the dopant atom at the center of heptazine unit prefer to align in a parallel way leading to long-range ferromagnetic (FM) ordering. When the joint N atom is replaced by C atom, the system favors an antiferromagnetic (AFM) ordering at unstrained state, but can be tuned to ferromagnetism (FM) by applying biaxial tensile strain. More interestingly, the FM state of the strained system is half-metallic with abundant states at the Fermi level in one spin channel and a band gap of 1.82 eV in another spin channel. The Curie temperature (Tc) was also evaluated using a mean-field theory and Monte Carlo simulations within the Ising model. Such tunable electron spin-polarization and ferromagnetism are quite promising for the applications of graphitic carbon nitride in spintronics.

Identificador

http://eprints.qut.edu.au/61908/

Publicador

Royal Society of Chemistry

Relação

DOI:10.1039/C3TC31213E

Zhang, Xiaoming, Zhao, Mingwen, Wang, Aizhu, Wang, Xiaopeng, & Du, Aijun (2013) Spin-polarization and ferromagnetism of graphitic carbon nitride materials. Journal of Materials Chemistry C, 1(6), pp. 6265-6270.

Fonte

School of Chemistry, Physics & Mechanical Engineering; Science & Engineering Faculty

Tipo

Journal Article