919 resultados para Many-to-many-assignment problem
Resumo:
Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.
Resumo:
Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.
Resumo:
Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diversity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller ""unplaced"" groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. Consistent with more weakly supported results from previous studies, our analyses support the monophyly of the four major clades and the relationships among them. Most importantly, Asterales are inferred to be sister to a clade containing Apiales and Dipsacales. Paracryphiaceae is consistently placed sister to the Dipsacales. However, the exact relationships of Bruniaceae, Columelliaceae, and an Escallonia clade depended upon the dataset. Areas of poor resolution in combined analyses may be partly explained by conflict between the coding and non-coding data partitions. We discuss the implications of these results for our understanding of campanulid phylogeny and evolution, paying special attention to how our findings bear on character evolution and biogeography in Dipsacales.
Resumo:
Given two maps h : X x K -> R and g : X -> K such that, for all x is an element of X, h(x, g(x)) = 0, we consider the equilibrium problem of finding (x) over tilde is an element of X such that h((x) over tilde, g(x)) >= 0 for every x is an element of X. This question is related to a coincidence problem.
Resumo:
2D electrophoresis is a well-known method for protein separation which is extremely useful in the field of proteomics. Each spot in the image represents a protein accumulation and the goal is to perform a differential analysis between pairs of images to study changes in protein content. It is thus necessary to register two images by finding spot correspondences. Although it may seem a simple task, generally, the manual processing of this kind of images is very cumbersome, especially when strong variations between corresponding sets of spots are expected (e.g. strong non-linear deformations and outliers). In order to solve this problem, this paper proposes a new quadratic assignment formulation together with a correspondence estimation algorithm based on graph matching which takes into account the structural information between the detected spots. Each image is represented by a graph and the task is to find a maximum common subgraph. Successful experimental results using real data are presented, including an extensive comparative performance evaluation with ground-truth data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.
Resumo:
Corporal punishment is a worldwide problem. The purpose withthis thesis is to promote a constructive discussion about the problem andconnect this to children’s rights. This gives the possibility to start adiscussion about suggestions and measures to reduce the problem. Thetheory is that corporal punishment is used as a disciplinary method tochange behavior. Children’s rights is regulated by conventions and nationallaws. The method is to conduct an analysis with interpretations andcommentaries of the research materials from South Africa and Sweden.The conclusion is that those who are positive to corporal punishment thinksit is an efficient working method, and it is about children’s safety. Thosewho are negative have experienced that alternative methods works. Asuggestion is to involve children in the work with children’s rights andeducate them in human and children’s rights with focus on obligations andresponsibility.
Resumo:
Tackling a problem requires mostly, an ability to read it, conceptualize it, represent it, define it, and then applying the necessary mechanisms to solve it. This may sound self-evident except when the problem to be tackled happens to be “complex, “ “ill-structured,” and/or “wicked.” Corruption is one of those kinds of problems. Both in its global and national manifestations it is ill-structured. Where it is structural in nature, endemic and pervasive, it is perhaps even wicked. Qualities of the kind impose modest expectations regarding possibilities of any definitive solution to this insidious phenomenon. If so, it may not suffice to address the problem of corruption using existing categories of law and/or good governance, which overlook the “long-term memory” of the collective and cultural specific dimensions of the subject. Such socio-historical conditions require focusing on the interactive and self-reproducing networks of corruption and attempting to ‘subvert’ that phenomenon’s entire matrix. Concepts such as collective responsibility, collective punishment and sanctions are introduced as relevant categories in the structural, as well as behavioral, subversion of some of the most prevalent aspects of corruption. These concepts may help in the evolving of a new perspective on corruption fighting strategies.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
É um trabalho de interdisciplinaridade entre o Direito e a Psicologia Social dentro da temática da discriminação trabalhista. Será apresentada a visão da Psicologia Social sobre preconceitos automáticos (“Implicit Bias”), assim como será discutida qual seria a melhor solução para o problema exposto. Ações afirmativas é o remédio mais adequado para combater preconceitos automáticos. O trabalho mostra a visão da Psicologia Social sobre a melhor forma de introduzir e conduzir as Ações afirmativas no mercado de trabalho. Será também feita uma análise jurídica constitucional e infraconstitucional das Ações afirmativas no mercado de trabalho, procurando entender se o ordenamento constitucional acolhe estas políticas no Brasil, bem como investigar o interesse do Estado em legislar para tornar tais iniciativas uma realidade.
Resumo:
The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.
Resumo:
The SONET/SDH Ring Assignment Problem (PALAS) treats to group localities in form of some rings, being respected the traffic's limitations of the equipment. Each ring uses a DXC (Digital Cross Connect) to make the communication with the others, being the DXC the equipment most expensive of the net, minimizing the number total of rings, will minimize the total net cost, problem's objective . This topology in rings provides a bigger capacity of regeneration. The PALAS is a problem in Combinatorial Optimization of NP-hard Class. It can be solved through Heuristics and Metaheuristics. In this text, we use Taboo Search while we keep a set of elite solutions to be used in the formation of a part of the collection of vocabulary's parts that in turn will be used in the Vocabulary Building. The Vocabulary Building will be started case Taboo Search does not reach the best solution for the instance. Three approaches had been implemented: one that only uses vocabulary's parts deriving of Taboo Search, one that it only uses vocabulary's parts randomly generated and a last one that it uses half come of the elite and half randomly generated
Resumo:
A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
Resumo:
This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems