Coincidence theorems and its applications to equilibrium problems
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Given two maps h : X x K -> R and g : X -> K such that, for all x is an element of X, h(x, g(x)) = 0, we consider the equilibrium problem of finding (x) over tilde is an element of X such that h((x) over tilde, g(x)) >= 0 for every x is an element of X. This question is related to a coincidence problem. |
Identificador |
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, v.9, n.2, p.327-337, 2011 1661-7738 http://producao.usp.br/handle/BDPI/28870 10.1007/s11784-011-0045-0 |
Idioma(s) |
eng |
Publicador |
BIRKHAUSER VERLAG AG |
Relação |
Journal of Fixed Point Theory and Applications |
Direitos |
restrictedAccess Copyright BIRKHAUSER VERLAG AG |
Palavras-Chave | #Acyclic multivalued map #coincidence point #quasiconvexity #equilibrium problem #Vietoris map #MANIFOLDS #BOUNDARY #MAPS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |