978 resultados para MULTIPLE MATERNAL ORIGINS
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.
Resumo:
Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case–control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of ‘pore’ function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln–270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory ‘pore’ function.
Resumo:
We present a new method for establishing correlation between deuterium and its attached carbon in a deuterated liquid crystal. The method is based on transfer of polarization using the DAPT pulse sequence proposed originally for two spin half nuclei, now extended to a spin-1 and a spin-1/2 nuclei. DAPT utilizes the evolution of magnetization of the spin pair under two blocks of phase shifted BLEW-12 pulses on one of the spins separated by a 90 degree pulse on the other spin. The method is easy to implement and does not need to satisfy matching conditions unlike the Hartmann-Hahn cross-polarization. Experimental results presented demonstrate the efficacy of the method.
Resumo:
A half-duplex constrained non-orthogonal cooperative multiple access (NCMA) protocol suitable for transmission of information from N users to a single destination in a wireless fading channel is proposed. Transmission in this protocol comprises of a broadcast phase and a cooperation phase. In the broadcast phase, each user takes turn broadcasting its data to all other users and the destination in an orthogonal fashion in time. In the cooperation phase, each user transmits a linear function of what it received from all other users as well as its own data. In contrast to the orthogonal extension of cooperative relay protocols to the cooperative multiple access channels wherein at any point of time, only one user is considered as a source and all the other users behave as relays and do not transmit their own data, the NCMA protocol relaxes the orthogonality built into the protocols and hence allows for a more spectrally efficient usage of resources. Code design criteria for achieving full diversity of N in the NCMA protocol is derived using pair wise error probability (PEP) analysis and it is shown that this can be achieved with a minimum total time duration of 2N - 1 channel uses. Explicit construction of full diversity codes is then provided for arbitrary number of users. Since the Maximum Likelihood decoding complexity grows exponentially with the number of users, the notion of g-group decodable codes is introduced for our setup and a set of necesary and sufficient conditions is also obtained.
Mechanisms of growth in small preterm infants and early life origins of adult cardiovascular disease
Resumo:
Androgens and the androgen receptor (AR) play a crucial role in the initiation and progression of prostate cancer (PCa), regulating the expression of many PCa risk-associated genes. Iroquois Homeobox 4 (IRX4) has been recently identified with PCa risk and overexpressed in PCa. We observed a down-regulation of IRX4 expression in the cells undergoing epithelial to mesenchymal transition, suggesting its potential role in PCa progression and aim to delineate the androgenmediated regulation of IRX4 in PCa.
Resumo:
We consider the problem of transmission of several discrete sources over a multiple access channel (MAC) with side information at the sources and the decoder. Source-channel separation does not hold for this channel. Sufficient conditions are provided for transmission of sources with a given distortion. The channel could have continuous alphabets (Gaussian MAC is a special case). Various previous results are obtained as special cases.
Resumo:
We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.
Resumo:
The prevalence and the causes of childhood visual impairment in Finland during the 1970s and the 1980s were investigated, with special attention to risk factors and further prevention of visual impairment in children. The primary data on children with visual impairment were obtained from the Finnish Register of Visual Impairment, one of the patient registers kept up by the National Research and Development Centre for Welfare and Health (Stakes). The data were supplemented from other registers in Stakes and from patient records of the children in Finnish central hospitals. Visual impairment had been registered in 556 children from a population of 1,138,326 children between ages 0-17, born from 1972 through 1989. The age-specific prevalence of registered visual impairment was 49/100,000 in total. Of them, 23/100,000 were blind children and 11/100,000 were children born prematurely. Boys were impaired more often and more severely than girls. Congenital malformations (52%), systemic diseases (48%), and multiple impairments (50%) were common. The main ophthalmic groups of visual impairment were retinal diseases (35%), ocular malformations (29%), and neuro-ophthalmological disorders (29%). Optic nerve atrophy was the most common diagnosis of visual impairment (22%), followed by congenital cataract (11%), retinopathy of prematurity (10%), and cerebral visual impairment (8%). Genetic factors (42%) were the most common etiologies of visual impairment, followed by prenatal (30%) and perinatal (21%) factors. The highest rates of blindness were seen in cerebral visual impairment (83%) and retinopathy of prematurity (82%). Retinopathy of prematurity had developed in the children born at a gestational age of 32 weeks or earlier. Significant risks for visual impairment were found in the association with preterm births, prenatal infections, birth asphyxia, neonatal respiratory difficulties, mechanical ventilation lasting over two weeks, and hyperbilirubinemia. A rise in blind and multi-impaired children was seen during the study period, associating with increases in the survival of preterm infants with extremely low birth weight. The incidence of visual impairment in children born prematurely was seven times higher than in children born at full term. A reliable profile of childhood visual impairment was obtained. The importance of highly qualified antenatal, neonatal, and ophthalmological care was clearly proved. The risks associated with pre- and perinatal disorders during pregnancy must be emphasized, e.g. the risks associated with maternal infections and the use of tobacco, alcohol, and drugs during pregnancy. Obvious needs for gene therapies and other new treatments for hereditary diseases were also proved.
Resumo:
Intrahepatic cholestasis of pregnancy (ICP) is the most common cholestatic liver disease during pregnancy. The reported incidence varies from 0.4 to 15% of full-term pregnancies. The etiology is heterogeneous but familial clustering is known to occur. Here we have studied the genetic background, epidemiology, and long-term hepatobiliary consequences of ICP. In a register-based nation-wide study (n=1 080 310) the incidence of ICP was 0.94% during 1987-2004. A slightly higher incidence, 1.3%, was found in a hospital-based series (n=5304) among women attending the University Hospital of Helsinki in 1992-1993. Of these 16% (11/69) were familial and showed a higher (92%) recurrence rate than the sporadic (40%) cases. In the register-based epidemiological study, advanced maternal age and, to a lesser degree, parity were identified as new risk factors for ICP. The risk was 3-fold higher in women >39 years of age compared to women <30 years. Multiple pregnancy also associated with an elevated risk. In a genetic study we found no association of ICP with the genes regulating bile salt transport (ABCB4, ABCB11 and ATP8B1). The livers of postmenopausal women with a history of ICP tolerated well the short-term exposure to oral and transdermal estradiol, although the doses used were higher than those in routine clinical use. The response of serum levels of sex hormone-binding globulin (SHBG) to oral estradiol was slightly reduced in the ICP group. Transdermal estradiol had no effect on C-reactive protein (CRP) or SHBG. A number of liver and biliary diseases were found to be associated with ICP. Women with a history of ICP showed elevated risks for non-alcoholic liver cirrhosis (8.2 CI 1.9-36), cholelithiasis and cholecystitis (3.7 CI 3.2-4.2), hepatitis C (3.5 CI 1.6-7.6) and non-alcoholic pancreatitis (3.2 CI 1.7-5.7). In conclusion, ICP complicates around 1% of all full-term pregnancies in Finland and its incidence has remained unchanged since 1987. It is familial in 16% of cases with a higher recurrence rate. Although the cause remains unknown, several risk factors, namely advanced maternal age, parity and multiple pregnancies, can be identified. Both oral and transdermal regimens of postmenopausal hormone therapy (HT) are safe for women with a history of ICP when liver function is considered. Some ICP patients are at risk of other liver and biliary diseases and, contrary to what has been thought, a follow-up is warranted.
Resumo:
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.