Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7T


Autoria(s): Qin, Shanlin; Liu, Fawang; Turner, Ian; Yu, Qiang; Yang, Qianqian; Vegh, Viktor
Data(s)

01/03/2016

Resumo

PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/94667/

Publicador

John Wiley & Sons

Relação

http://eprints.qut.edu.au/94667/1/94667.pdf

DOI:10.1002/mrm.26222

Qin, Shanlin, Liu, Fawang, Turner, Ian, Yu, Qiang, Yang, Qianqian, & Vegh, Viktor (2016) Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7T. Magnetic Resonance in Medicine. (In Press)

Fonte

ARC Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS); School of Mathematical Sciences

Palavras-Chave #magnetic resonance imaging;Bloch equation;ultrahigh field;human brain; anomalous relaxation;fractional derivative
Tipo

Journal Article