980 resultados para MQW (multiple quantum wells)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a detailed investigation on the temperature-dependent behavior of photoluminescence from molecular beam epitaxy (MBE)-grown chlorine-doped ZnSe epilayers. The overwhelming neutral donor bound exciton ((ClX)-X-0) emission at 2.797 eV near the band edge with a full-width at half-maximum (FWHM) of similar to 13 meV reveals the high crystalline quality of the samples used. In our experiments, the quick quenching of the (ClX)-X-0 line above 200 K is mainly due to the presence of a nonradiative center with a thermal activation energy of similar to 90 meV, The same activation energy and similar quenching tendency of the (ClX)-X-0 line and the I-3 line at 2.713 eV indicate that they originate from the same physical mechanism. We demonstrate for the first time that the dominant decrease of the integrated intensity of the I, line is due to the thermal excitation of the "I-3 center"-bound excitons to its free exciton states, leaving the "I-3 centers" as efficient nonradiative centers. The optical performance of ZnSe materials is expected to be greatly improved if the density of the "I-3 center" can be controlled. The decrease in the luminescence intensity at moderately low temperature (30-200 K) of the (ClX)-X-0 line is due to the thermal activation of neutral-donor-bound excitons ((ClX)-X-0) to free excitons. (C) 2000 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the growth of GaInNAs by a plasma-assisted molecular-beam epitaxy (MBE). It was found that the N-radicals were incorporated into the epitaxial layer like dopant atoms. In the range of 400-500 degrees C, the growth temperature (T-g) mainly affected the crystal quality of GaInNAs rather than the N concentration. The N concentration dropped rapidly when T-g exceeded 500 degrees C. Considering N desorption alone is insufficient to account for the strong falloff of the N concentration with T-g over 500 degrees C, the effect of thermally-activated N surface segregation must be taken into account. The N concentration was independent of the arsenic pressure and the In concentration in GaInNAs layers, but inversely proportional to the growth rate. Based on the experimental results, a kinetic model including N desorption and surface segregation was developed to analyze quantitatively the N incorporation in MBE growth. (C) 2000 American Institute of Physics. [S0003-6951(00)00928-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Si overgrowth on the structural and luminescence properties of strained Ge layer grown on Si(1 0 0) is studied. Capping Si leads to the dissolution of Ge island apex and reduced island height. The structural changes in island shape, especially in chemical composition during Si overgrowth have a large effect on the PL properties. The integrated PL intensity of Ge layer increases and there are large blue shifts in peak energies after capping Si. The PL spectra from buried Ge layer are consistent with type-II band alignment in SiGe/Si. We show that the PL properties from buried Ge layer may be tailored by modifying the cap layer growth conditions as well as post-growth annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding energies of excitons bound to neutral donors in two-dimensional (2D) semiconductors within the spherical-effective-mass approximation, which are nondegenerate energy bands, have been calculated by a variational method for a relevant range of the effective electron-to-hole mass ratio sigma. The ratio of the binding energy of a 2D exciton bound to a neutral donor to that of a 2D neutral donor is found to be from 0.58 to 0.10. In the limit of vanishing sigma and large sigma, the results agree fairly well with previous experimental results. The results of this approach are compared with those of earlier theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the magnetoexciton polaritons in planar semiconductors microcavities by a quantum approach developed in the strong and weak magnetic-field limits. Ht is shown that the vacuum Rabi splittings with different Landau level indices are close to each other and tend to be proportional to B at sufficiently large values of the magnetic field. Also, we show that the calculated results are in good agreement with the experimental observations. [S0163-1829(99)10215-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new interface anisotropic potential, which is proportional to the lattice mismatch of interfaces and has no fitting parameter, has been deduced for (001) zinc-blende semiconductor interfaces. The comparison with other interface models is given for GaAs/AlAs and GaAs/InAs interfaces. The strong influence of the interface anisotropic potential on the inplane optical anisotropy of GaAs/AlGaAs low dimensional structures is demonstrated theoretically within the envelope function approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the dependence on hydrostatic pressure of the photoluminescence of an InAs submonolayer embedded in a GaAs matrix at 15 K and for pressure up to 8 GPa. Strong InAs-related emissions are observed in all three samples at ambient pressure. The temperature dependence of the emission intensity for these Peaks can be well characterized by the thermal activation of excitons from the InAs layer to the GaAs matrix. With increasing pressure, the InAs-related peaks shift to. higher energies. The pressure coefficients of these peaks are very close to that of the free exciton in bulk GaAs. Some weak peaks observed at pressures above 4.2 GPa are attributed to indirect transitions involving X states in the InAs layer. These results are similar to the pressure behaviour observed in the InAs/GaAs monolayer structures. A group of new lines has been observed in the spectra when pressure is increased beyond 2.5 GPa, which is attributed to the N isoelectronic traps in the GaAs matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When an intersubband relaxation is involved in vertical transport in a tunneling heterostructure, the magnetic suppression of the intersubband LO or LA phonon scattering may also give rise to a noticeable depression of the resonant tunneling current, unrelated to the Coulomb correlation effect. The slowdown of the intersubband scattering rate makes fewer electrons able to tunnel resonantly between two adjacent quantum wells (QWs) in a three-barrier, two-well heterostructure. The influence of the magnetic field on the intersubband relaxation can be studied in an explicit way by a physical model based on the dynamics of carrier populations in the ground and excited subbands of the incident QW. (C) 1998 American Institute of Physics. [S0003-6951(98)00925-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear and circular photogalvanic effects have been observed in undoped InN films for the interband transition by irradiation of 1060 nm laser at room temperature. The spin polarized photocurrent depends on the degree of polarization, and changes its sip when the radiation helicity changes from left-handed to right-handed. This result indicates the sizeable spin-orbit interaction in the InN epitaxial layer and provides an effective method to generate spin polarized photocurrent and to detect spin-splitting effect in semiconductors with promising applications on spintronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.