926 resultados para Grain -- Machinery -- Safety measures
Resumo:
Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.
Resumo:
Singapore is a highly developed country that has a well connected island-wide road transport system including a network of expressways. The road standards of Singapore are generally good and road safety level is very high by international standards. This chapter discusses road safety status in Singapore and highlights the practices that have been undertaken to enhance the road safety. Statistics show that road traffic fatalities were decreasing over the years, albeit an increasing trend for total crashes. Motorcyclists and pedestrians were two vulnerable road user groups and shared significant proportions respectively about 49% and 28% of total road traffic deaths. In particular, young riders and pedestrians had a higher crash potential. To enhance safety of those vulnerable road users, Singapore has taken several initiatives including infrastructure improvements like paving better skid-resistant materials at crash-prone sites, providing more rain shelters for motorcyclists, and installation of reflective signs and markings near school zones; safety campaigns and awareness programs like ride safe programme, the road courtesy campaign, and the anti-drink drive campaign. While Land Transport Authority (LTA) looks into road safety through engineering solutions and road infrastructure developments, the Traffic Police of Singapore is responsible for law enforcements and regulations. A number of non-government organizations, private companies, and university research groups are also continuously working with the Traffic Police to study, promote, and educate the general public on road safety matters.
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
Resumo:
Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at signalized intersections. ‘Motorcycle safety at signalized intersections’ provides an in-depth understanding of hazards of motorcycles at signalized intersections and suggests some targeted countermeasures to alleviate the problem. Motorcycle safety has been examined by establishing innovative statistical models with detailed investigation on specific maneuver behavior of motorcycles at intersections. Results indicate that motorcyclists are over exposed at signalized intersections and the excess exposure is one of main contributors to their vulnerability at intersections. The presence of red light cameras at intersections not only lower motorcycle crashes due to reduced red-light running in the conflicting stream but also decrease their exposure and hence crashes due to a more restrained discharge pattern of motorcycles. Targeted countermeasures should include deployment of red-light cameras, improvement in motorcyclist visibility and increased awareness on motorcyclist vulnerability.
Resumo:
The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.
Resumo:
There are about 4,000 garment industries in Bangladesh, most of them are clustered in and around the capital city. Together they account for 75 percent of the country's export earnings and employ around 1.8 million people which is almost one half of the total industrial workforce of the country. Though it is the most important economy sector of Bangladesh, unplanned and haphazardly built garment factories are also inducing many social, housing and most importantly urban transportation problems which are a great cause of concern. This study investigates the impact of garment industries on transportation, in particular road safety issues of garment workers. Data is collected to identify the locational problems of garment factories, spatial distribution of worker residences, and their travel pattern as well as to assess their walking and road crossing problems. Finally, recommendations are put forward to tackle transport problems arising from these unplanned establishments of export oriented garments industries in Dhaka Metropolitan City.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Continuing growth of shipping traffic in number and sizes is likely to result in increased number of traffic movements, which consequently could result higher risk of collisions in these restricted waters. This continually increasing safety concern warrants a comprehensive technique for modeling collision risk in port waters, particularly for modeling the probability of collision events and the associated consequences (i.e., injuries and fatalities). A number of techniques have been utilized for modeling the risk qualitatively, semi-quantitatively and quantitatively. These traditional techniques mostly rely on historical collision data, often in conjunction with expert judgments. However, these techniques are hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of collision counts for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique (NTCT), which uses traffic conflicts as an alternative to the collisions for modeling the probability of collision events quantitatively. This article explores the existing techniques for modeling collision risk in port waters. In particular, it identifies the advantages and limitations of the traditional techniques and highlights the potentials of the NTCT in overcoming the limitations. In view of the principles of the NTCT, a structured method for managing collision risk is proposed. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which consequently has great potential for managing collision risk in a fast, reliable and efficient manner.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2011 evaluation campaign, which consisted of a five active tracks: Books and Social Search, Data Centric, Question Answering, Relevance Feedback, and Snippet Retrieval. INEX 2011 saw a range of new tasks and tracks, such as Social Book Search, Faceted Search, Snippet Retrieval, and Tweet Contextualization.
Resumo:
The purpose of the study: The purpose of this study is to investigate the influence of cultural diversity, in a multicultural nursing workforce, on the quality and safety of patient care and the work environment at King Abdul-Aziz Medical City, Riyadh region. Study background: Due to global migration and workforce mobility, to varying degrees, cultural diversity exists in most health services around the world, particularly occurring where the health care workforce is multicultural or where the domestic population comprises minority groups from different cultures speaking different languages. Further complexities occur when countries have a multicultural workforce which is different from the population for whom they care, in addition to the workers being from culturally diverse countries and with different languages. In Saudi Arabia the health system is mainly staffed by expatriate nurses who comprise 67.7% of the total number of nurses. Study design: This research utilised a case study design which incorporated multiple methods including survey, qualitative interviews and document review. Methods: The participant nurses were selected for the survey via a population sampling strategy; 319 nurses returned their completed Safety Climate Survey questionnaires. Descriptive and inferential statistics (Kruskal–Wallis test) were used to analyse survey data. For the qualitative component of the study, a purposive sampling strategy was used; 24 nurses were interviewed using a semi-structured interview technique. The documentary review included KAMC-R policy documents that met the inclusion criteria using a predetermined data abstraction instrument. Content analysis was used to analyse the policy documents data. Results: The data revealed the nurses‘ perceptions of the clinical climate in this multicultural environment is that it was unsafe, with a mean score of 3.9 out of 5. No significant difference was detected between the age groups or years of experience of the nurses and the perception of safety climate in this context; the study did reveal a statistically significant difference between the cultural background categories and the perception of safety climate. The qualitative phase indicated that the nurses within this environment were struggling to achieve cultural competence; consequently, they were having difficulties in meeting the patients‘ cultural and spiritual needs as well as maintaining a high standard of care. The results also indicated that nurses were disempowered in this context. Importantly, there was inadequate support by the organisation to manage the cultural diversity issue and to protect patients from any associated risks, as demonstrated by the policy documents and supported by the nurses‘ experiences. The study also illustrated the limitations of the conceptual framework of cultural competence when tested in this multicultural workforce context. Therefore, this study generated amendments to the model that is suitable to be used in the context of a multicultural nursing workforce. Conclusion: The multicultural nature of this nursing work environment is inherently risky due to the conflicts that arise from the different cultural norms, beliefs, behaviours and languages. Further, there was uncertainty within the multicultural nursing workforce about the clinical and cultural safety of the patient care environment and about the cultural safety of the nursing workforce. The findings of the study contribute important new knowledge to the area of patient and nurse safety in a multicultural environment and contribute theoretical development to the field of cultural competence. Specifically, the findings will inform policy and practice related to patient care in the context of cultural diversity.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.