957 resultados para Differential Equations with "maxima"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resume : Mieux comprendre les stromatolithes et les tapis microbiens est un sujet important en biogéosciences puisque cela aide à l'étude des premières formes de vie sur Terre, a mieux cerner l'écologie des communautés microbiennes et la contribution des microorganismes a la biominéralisation, et même à poser certains fondements dans les recherches en exobiologie. D'autre part, la modélisation est un outil puissant utilisé dans les sciences naturelles pour appréhender différents phénomènes de façon théorique. Les modèles sont généralement construits sur un système d'équations différentielles et les résultats sont obtenus en résolvant ce système. Les logiciels disponibles pour implémenter les modèles incluent les logiciels mathématiques et les logiciels généraux de simulation. L'objectif principal de cette thèse est de développer des modèles et des logiciels pour aider a comprendre, via la simulation, le fonctionnement des stromatolithes et des tapis microbiens. Ces logiciels ont été développés en C++ en ne partant d'aucun pré-requis de façon a privilégier performance et flexibilité maximales. Cette démarche permet de construire des modèles bien plus spécifiques et plus appropriés aux phénomènes a modéliser. Premièrement, nous avons étudié la croissance et la morphologie des stromatolithes. Nous avons construit un modèle tridimensionnel fondé sur l'agrégation par diffusion limitée. Le modèle a été implémenté en deux applications C++: un moteur de simulation capable d'exécuter un batch de simulations et de produire des fichiers de résultats, et un outil de visualisation qui permet d'analyser les résultats en trois dimensions. Après avoir vérifié que ce modèle peut en effet reproduire la croissance et la morphologie de plusieurs types de stromatolithes, nous avons introduit un processus de sédimentation comme facteur externe. Ceci nous a mené a des résultats intéressants, et permis de soutenir l'hypothèse que la morphologie des stromatolithes pourrait être le résultat de facteurs externes autant que de facteurs internes. Ceci est important car la classification des stromatolithes est généralement fondée sur leur morphologie, imposant que la forme d'un stromatolithe est dépendante de facteurs internes uniquement (c'est-à-dire les tapis microbiens). Les résultats avancés dans ce mémoire contredisent donc ces assertions communément admises. Ensuite, nous avons décidé de mener des recherches plus en profondeur sur les aspects fonctionnels des tapis microbiens. Nous avons construit un modèle bidimensionnel de réaction-diffusion fondé sur la simulation discrète. Ce modèle a été implémenté dans une application C++ qui permet de paramétrer et exécuter des simulations. Nous avons ensuite pu comparer les résultats de simulation avec des données du monde réel et vérifier que le modèle peut en effet imiter le comportement de certains tapis microbiens. Ainsi, nous avons pu émettre et vérifier des hypothèses sur le fonctionnement de certains tapis microbiens pour nous aider à mieux en comprendre certains aspects, comme la dynamique des éléments, en particulier le soufre et l'oxygène. En conclusion, ce travail a abouti à l'écriture de logiciels dédiés à la simulation de tapis microbiens d'un point de vue tant morphologique que fonctionnel, suivant deux approches différentes, l'une holistique, l'autre plus analytique. Ces logiciels sont gratuits et diffusés sous licence GPL (General Public License). Abstract : Better understanding of stromatolites and microbial mats is an important topic in biogeosciences as it helps studying the early forms of life on Earth, provides clues re- garding the ecology of microbial ecosystems and their contribution to biomineralization, and gives basis to a new science, exobiology. On the other hand, modelling is a powerful tool used in natural sciences for the theoretical approach of various phenomena. Models are usually built on a system of differential equations and results are obtained by solving that system. Available software to implement models includes mathematical solvers and general simulation software. The main objective of this thesis is to develop models and software able to help to understand the functioning of stromatolites and microbial mats. Software was developed in C++ from scratch for maximum performance and flexibility. This allows to build models much more specific to a phenomenon rather than general software. First, we studied stromatolite growth and morphology. We built a three-dimensional model based on diffusion-limited aggregation. The model was implemented in two C++ applications: a simulator engine, which can run a batch of simulations and produce result files, and a Visualization tool, which allows results to be analysed in three dimensions. After verifying that our model can indeed reproduce the growth and morphology of several types of stromatolites, we introduced a sedimentation process as an external factor. This lead to interesting results, and allowed to emit the hypothesis that stromatolite morphology may be the result of external factors as much as internal factors. This is important as stromatolite classification is usually based on their morphology, imposing that a stromatolite shape is dependant on internal factors only (i.e. the microbial mat). This statement is contradicted by our findings, Second, we decided to investigate deeper the functioning of microbial mats, We built a two-dimensional reaction-diffusion model based on discrete simulation, The model was implemented in a C++ application that allows setting and running simulations. We could then compare simulation results with real world data and verify that our model can indeed mimic the behaviour of some microbial mats. Thus, we have proposed and verified hypotheses regarding microbial mats functioning in order to help to better understand them, e.g. the cycle of some elements such as oxygen or sulfur. ln conclusion, this PhD provides a simulation software, dealing with two different approaches. This software is free and available under a GPL licence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Koneet voidaan usein jakaa osajärjestelmiin, joita ovat ohjaus- ja säätöjärjestelmät, voimaa tuottavat toimilaitteet ja voiman välittävät mekanismit. Eri osajärjestelmiä on simuloitu tietokoneavusteisesti jo usean vuosikymmenen ajan. Osajärjestelmien yhdistäminen on kuitenkin uudempi ilmiö. Usein esimerkiksi mekanismien mallinnuksessa toimilaitteen tuottama voimaon kuvattu vakiona, tai ajan funktiona muuttuvana voimana. Vastaavasti toimilaitteiden analysoinnissa mekanismin toimilaitteeseen välittämä kuormitus on kuvattu vakiovoimana, tai ajan funktiona työkiertoa kuvaavana kuormituksena. Kun osajärjestelmät on erotettu toisistaan, on niiden välistenvuorovaikutuksien tarkastelu erittäin epätarkkaa. Samoin osajärjestelmän vaikutuksen huomioiminen koko järjestelmän käyttäytymissä on hankalaa. Mekanismien dynamiikan mallinnukseen on kehitetty erityisesti tietokoneille soveltuvia numeerisia mallinnusmenetelmiä. Useimmat menetelmistä perustuvat Lagrangen menetelmään, joka mahdollistaa vapaasti valittaviin koordinaattimuuttujiin perustuvan mallinnuksen. Numeerista ratkaisun mahdollistamiseksi menetelmän avulla muodostettua differentiaali-algebraaliyhtälöryhmää joudutaan muokkaamaan esim. derivoimalla rajoiteyhtälöitä kahteen kertaan. Menetelmän alkuperäisessä numeerisissa ratkaisuissa kaikki mekanismia kuvaavat yleistetyt koordinaatit integroidaan jokaisella aika-askeleella. Tästä perusmenetelmästä johdetuissa menetelmissä riippumattomat yleistetyt koordinaatit joko integroidaan ja riippuvat koordinaatit ratkaistaan rajoiteyhtälöiden perusteella tai yhtälöryhmän kokoa pienennetään esim. käyttämällä nopeus- ja kiihtyvyysanalyyseissä eri kiertymäkoordinaatteja kuin asema-analyysissä. Useimmat integrointimenetelmät on alun perin tarkoitettu differentiaaliyhtälöiden (ODE) ratkaisuunjolloin yhtälöryhmään liitetyt niveliä kuvaavat algebraaliset rajoiteyhtälöt saattavat aiheuttaa ongelmia. Nivelrajoitteiden virheiden korjaus, stabilointi, on erittäin tärkeää mekanismien dynamiikan simuloinnin onnistumisen ja tulosten oikeellisuuden kannalta. Mallinnusmenetelmien johtamisessa käytetyn virtuaalisen työn periaatteen oletuksena nimittäin on, etteivät rajoitevoimat tee työtä, eli rajoitteiden vastaista siirtymää ei tapahdu. Varsinkaan monimutkaisten järjestelmien pidemmissä analyyseissä nivelrajoitteet eivät toteudu tarkasti. Tällöin järjestelmän energiatasapainoei toteudu ja järjestelmään muodostuu virtuaalista energiaa, joka rikkoo virtuaalisen työn periaatetta, Tästä syystä tulokset eivät enää pidäpaikkaansa. Tässä raportissa tarkastellaan erityyppisiä mallinnus- ja ratkaisumenetelmiä, ja vertaillaan niiden toimivuutta yksinkertaisten mekanismien numeerisessa ratkaisussa. Menetelmien toimivuutta tarkastellaan ratkaisun tehokkuuden, nivelrajoitteiden toteutumisen ja energiatasapainon säilymisen kannalta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intending to quest about the conceptions math teachers hold about how to teach Differential Equations to chemistry and biology students, we have devised a research tool which allows us to derive relevant information. We use different means to collect the adequate data related to the qualitative research, targeting the exploration of what teachers «say they do» and what athey do and would like to do». The use of concept maps and a questionnaire, along with a recorded interview, has revealed itself as an accurate means for the appropriate analysis of data, as shown in the case study we hereby include.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements and we examine several optimization and decision problems of the insurer with respect to the reinsurance strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable deficit at ruin if ruin occurs. The discounted penalty function (Gerber & Shiu, 1998) is employed to calculate as particular cases the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tavoitteena oli toteuttaa simulointimalli, jolla pystytään tutkimaan kestomagnetoidun tahtikoneen aiheuttaman vääntömomenttivärähtelyn vaikutuksia sähkömoottoriin liitetyssä mekaniikassa. Tarkoitus oli lisäksi selvittää kuinka kyseinen simulointimalli voidaan toteuttaa nykyaikaisia simulointiohjelmia käyttäen. Saatujen simulointitulosten oikeellisuus varmistettiin tätä työtä varten rakennetulla verifiointilaitteistolla. Tutkittava rakenne koostui akselista, johon kiinnitettiin epäkeskotanko. Epäkeskotankoon kiinnitettiin massa, jonka sijaintia voitiin muunnella. Massan asemaa muuttamalla saatiin rakenteelle erilaisia ominaistaajuuksia. Epäkeskotanko mallinnettiin joustavana elementtimenetelmää apuna käyttäen. Mekaniikka mallinnettiin dynamiikan simulointiin tarkoitetussa ADAMS –ohjelmistossa, johon joustavana mallinnettu epäkeskotanko tuotiin ANSYS –elementtimenetelmäohjelmasta. Mekaniikan malli siirrettiin SIMULINK –ohjelmistoon, jossa mallinnettiin myös sähkökäyttö. SIMULINK –ohjelmassa mallinnettiin sähkökäyttö, joka kuvaa kestomagnetoitua tahtikonetta. Kestomagnetoidun tahtikoneen yhtälöt perustuvat lineaarisiin differentiaaliyhtälöihin, joihin hammasvääntömomentin vaikutus on lisätty häiriösignaalina. Sähkökäytön malli tuottaa vääntömomenttia, joka syötetään ADAMS –ohjelmistolla mallinnettuun mekaniikkaan. Mekaniikan mallista otetaan roottorin kulmakiihtyvyyden arvo takaisinkytkentänä sähkömoottorin malliin. Näin saadaan aikaiseksi yhdistetty simulointi, joka koostuu sähkötoimilaitekäytöstä ja mekaniikasta. Tulosten perusteella voidaan todeta, että sähkökäyttöjen ja mekaniikan yhdistetty simulointi on mahdollista toteuttaa valituilla menetelmillä. Simuloimalla saadut tulokset vastaavat hyvin mitattuja tuloksia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.